wzhouxiff's picture
init
2890711
from pytorch_lightning import seed_everything
from scripts.demo.streamlit_helpers import *
SAVE_PATH = "outputs/demo/txt2img/"
SD_XL_BASE_RATIOS = {
"0.5": (704, 1408),
"0.52": (704, 1344),
"0.57": (768, 1344),
"0.6": (768, 1280),
"0.68": (832, 1216),
"0.72": (832, 1152),
"0.78": (896, 1152),
"0.82": (896, 1088),
"0.88": (960, 1088),
"0.94": (960, 1024),
"1.0": (1024, 1024),
"1.07": (1024, 960),
"1.13": (1088, 960),
"1.21": (1088, 896),
"1.29": (1152, 896),
"1.38": (1152, 832),
"1.46": (1216, 832),
"1.67": (1280, 768),
"1.75": (1344, 768),
"1.91": (1344, 704),
"2.0": (1408, 704),
"2.09": (1472, 704),
"2.4": (1536, 640),
"2.5": (1600, 640),
"2.89": (1664, 576),
"3.0": (1728, 576),
}
VERSION2SPECS = {
"SDXL-base-1.0": {
"H": 1024,
"W": 1024,
"C": 4,
"f": 8,
"is_legacy": False,
"config": "configs/inference/sd_xl_base.yaml",
"ckpt": "checkpoints/sd_xl_base_1.0.safetensors",
},
"SDXL-base-0.9": {
"H": 1024,
"W": 1024,
"C": 4,
"f": 8,
"is_legacy": False,
"config": "configs/inference/sd_xl_base.yaml",
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors",
},
"SD-2.1": {
"H": 512,
"W": 512,
"C": 4,
"f": 8,
"is_legacy": True,
"config": "configs/inference/sd_2_1.yaml",
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors",
},
"SD-2.1-768": {
"H": 768,
"W": 768,
"C": 4,
"f": 8,
"is_legacy": True,
"config": "configs/inference/sd_2_1_768.yaml",
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors",
},
"SDXL-refiner-0.9": {
"H": 1024,
"W": 1024,
"C": 4,
"f": 8,
"is_legacy": True,
"config": "configs/inference/sd_xl_refiner.yaml",
"ckpt": "checkpoints/sd_xl_refiner_0.9.safetensors",
},
"SDXL-refiner-1.0": {
"H": 1024,
"W": 1024,
"C": 4,
"f": 8,
"is_legacy": True,
"config": "configs/inference/sd_xl_refiner.yaml",
"ckpt": "checkpoints/sd_xl_refiner_1.0.safetensors",
},
}
def load_img(display=True, key=None, device="cuda"):
image = get_interactive_image(key=key)
if image is None:
return None
if display:
st.image(image)
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
width, height = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = image.resize((width, height))
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image.to(device)
def run_txt2img(
state,
version,
version_dict,
is_legacy=False,
return_latents=False,
filter=None,
stage2strength=None,
):
if version.startswith("SDXL-base"):
W, H = st.selectbox("Resolution:", list(SD_XL_BASE_RATIOS.values()), 10)
else:
H = st.number_input("H", value=version_dict["H"], min_value=64, max_value=2048)
W = st.number_input("W", value=version_dict["W"], min_value=64, max_value=2048)
C = version_dict["C"]
F = version_dict["f"]
init_dict = {
"orig_width": W,
"orig_height": H,
"target_width": W,
"target_height": H,
}
value_dict = init_embedder_options(
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
init_dict,
prompt=prompt,
negative_prompt=negative_prompt,
)
sampler, num_rows, num_cols = init_sampling(stage2strength=stage2strength)
num_samples = num_rows * num_cols
if st.button("Sample"):
st.write(f"**Model I:** {version}")
out = do_sample(
state["model"],
sampler,
value_dict,
num_samples,
H,
W,
C,
F,
force_uc_zero_embeddings=["txt"] if not is_legacy else [],
return_latents=return_latents,
filter=filter,
)
return out
def run_img2img(
state,
version_dict,
is_legacy=False,
return_latents=False,
filter=None,
stage2strength=None,
):
img = load_img()
if img is None:
return None
H, W = img.shape[2], img.shape[3]
init_dict = {
"orig_width": W,
"orig_height": H,
"target_width": W,
"target_height": H,
}
value_dict = init_embedder_options(
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
init_dict,
prompt=prompt,
negative_prompt=negative_prompt,
)
strength = st.number_input(
"**Img2Img Strength**", value=0.75, min_value=0.0, max_value=1.0
)
sampler, num_rows, num_cols = init_sampling(
img2img_strength=strength,
stage2strength=stage2strength,
)
num_samples = num_rows * num_cols
if st.button("Sample"):
out = do_img2img(
repeat(img, "1 ... -> n ...", n=num_samples),
state["model"],
sampler,
value_dict,
num_samples,
force_uc_zero_embeddings=["txt"] if not is_legacy else [],
return_latents=return_latents,
filter=filter,
)
return out
def apply_refiner(
input,
state,
sampler,
num_samples,
prompt,
negative_prompt,
filter=None,
finish_denoising=False,
):
init_dict = {
"orig_width": input.shape[3] * 8,
"orig_height": input.shape[2] * 8,
"target_width": input.shape[3] * 8,
"target_height": input.shape[2] * 8,
}
value_dict = init_dict
value_dict["prompt"] = prompt
value_dict["negative_prompt"] = negative_prompt
value_dict["crop_coords_top"] = 0
value_dict["crop_coords_left"] = 0
value_dict["aesthetic_score"] = 6.0
value_dict["negative_aesthetic_score"] = 2.5
st.warning(f"refiner input shape: {input.shape}")
samples = do_img2img(
input,
state["model"],
sampler,
value_dict,
num_samples,
skip_encode=True,
filter=filter,
add_noise=not finish_denoising,
)
return samples
if __name__ == "__main__":
st.title("Stable Diffusion")
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
version_dict = VERSION2SPECS[version]
if st.checkbox("Load Model"):
mode = st.radio("Mode", ("txt2img", "img2img"), 0)
else:
mode = "skip"
st.write("__________________________")
set_lowvram_mode(st.checkbox("Low vram mode", True))
if version.startswith("SDXL-base"):
add_pipeline = st.checkbox("Load SDXL-refiner?", False)
st.write("__________________________")
else:
add_pipeline = False
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
seed_everything(seed)
save_locally, save_path = init_save_locally(os.path.join(SAVE_PATH, version))
if mode != "skip":
state = init_st(version_dict, load_filter=True)
if state["msg"]:
st.info(state["msg"])
model = state["model"]
is_legacy = version_dict["is_legacy"]
prompt = st.text_input(
"prompt",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
)
if is_legacy:
negative_prompt = st.text_input("negative prompt", "")
else:
negative_prompt = "" # which is unused
stage2strength = None
finish_denoising = False
if add_pipeline:
st.write("__________________________")
version2 = st.selectbox("Refiner:", ["SDXL-refiner-1.0", "SDXL-refiner-0.9"])
st.warning(
f"Running with {version2} as the second stage model. Make sure to provide (V)RAM :) "
)
st.write("**Refiner Options:**")
version_dict2 = VERSION2SPECS[version2]
state2 = init_st(version_dict2, load_filter=False)
st.info(state2["msg"])
stage2strength = st.number_input(
"**Refinement strength**", value=0.15, min_value=0.0, max_value=1.0
)
sampler2, *_ = init_sampling(
key=2,
img2img_strength=stage2strength,
specify_num_samples=False,
)
st.write("__________________________")
finish_denoising = st.checkbox("Finish denoising with refiner.", True)
if not finish_denoising:
stage2strength = None
if mode == "txt2img":
out = run_txt2img(
state,
version,
version_dict,
is_legacy=is_legacy,
return_latents=add_pipeline,
filter=state.get("filter"),
stage2strength=stage2strength,
)
elif mode == "img2img":
out = run_img2img(
state,
version_dict,
is_legacy=is_legacy,
return_latents=add_pipeline,
filter=state.get("filter"),
stage2strength=stage2strength,
)
elif mode == "skip":
out = None
else:
raise ValueError(f"unknown mode {mode}")
if isinstance(out, (tuple, list)):
samples, samples_z = out
else:
samples = out
samples_z = None
if add_pipeline and samples_z is not None:
st.write("**Running Refinement Stage**")
samples = apply_refiner(
samples_z,
state2,
sampler2,
samples_z.shape[0],
prompt=prompt,
negative_prompt=negative_prompt if is_legacy else "",
filter=state.get("filter"),
finish_denoising=finish_denoising,
)
if save_locally and samples is not None:
perform_save_locally(save_path, samples)