Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from packaging import version | |
OPENAIUNETWRAPPER = "sgm.modules.diffusionmodules.wrappers.OpenAIWrapper" | |
class IdentityWrapper(nn.Module): | |
def __init__(self, diffusion_model, compile_model: bool = False): | |
super().__init__() | |
compile = ( | |
torch.compile | |
if (version.parse(torch.__version__) >= version.parse("2.0.0")) | |
and compile_model | |
else lambda x: x | |
) | |
self.diffusion_model = compile(diffusion_model) | |
def forward(self, *args, **kwargs): | |
return self.diffusion_model(*args, **kwargs) | |
class OpenAIWrapper(IdentityWrapper): | |
def forward( | |
self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs | |
) -> torch.Tensor: | |
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1) | |
return self.diffusion_model( | |
x, | |
timesteps=t, | |
context=c.get("crossattn", None), | |
y=c.get("vector", None), | |
**kwargs, | |
) | |