""" partially adopted from https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py and https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py and https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py thanks! """ import math from typing import Optional import torch import torch.nn as nn from einops import rearrange, repeat def make_beta_schedule( schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, ): if schedule == "linear": betas = ( torch.linspace( linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 ) ** 2 ) return betas.numpy() def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def mixed_checkpoint(func, inputs: dict, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that it also works with non-tensor inputs :param func: the function to evaluate. :param inputs: the argument dictionary to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)] tensor_inputs = [ inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor) ] non_tensor_keys = [ key for key in inputs if not isinstance(inputs[key], torch.Tensor) ] non_tensor_inputs = [ inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor) ] args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params) return MixedCheckpointFunction.apply( func, len(tensor_inputs), len(non_tensor_inputs), tensor_keys, non_tensor_keys, *args, ) else: return func(**inputs) class MixedCheckpointFunction(torch.autograd.Function): @staticmethod def forward( ctx, run_function, length_tensors, length_non_tensors, tensor_keys, non_tensor_keys, *args, ): ctx.end_tensors = length_tensors ctx.end_non_tensors = length_tensors + length_non_tensors ctx.gpu_autocast_kwargs = { "enabled": torch.is_autocast_enabled(), "dtype": torch.get_autocast_gpu_dtype(), "cache_enabled": torch.is_autocast_cache_enabled(), } assert ( len(tensor_keys) == length_tensors and len(non_tensor_keys) == length_non_tensors ) ctx.input_tensors = { key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors])) } ctx.input_non_tensors = { key: val for (key, val) in zip( non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors]) ) } ctx.run_function = run_function ctx.input_params = list(args[ctx.end_non_tensors :]) with torch.no_grad(): output_tensors = ctx.run_function( **ctx.input_tensors, **ctx.input_non_tensors ) return output_tensors @staticmethod def backward(ctx, *output_grads): # additional_args = {key: ctx.input_tensors[key] for key in ctx.input_tensors if not isinstance(ctx.input_tensors[key],torch.Tensor)} ctx.input_tensors = { key: ctx.input_tensors[key].detach().requires_grad_(True) for key in ctx.input_tensors } with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): # Fixes a bug where the first op in run_function modifies the # Tensor storage in place, which is not allowed for detach()'d # Tensors. shallow_copies = { key: ctx.input_tensors[key].view_as(ctx.input_tensors[key]) for key in ctx.input_tensors } # shallow_copies.update(additional_args) output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors) input_grads = torch.autograd.grad( output_tensors, list(ctx.input_tensors.values()) + ctx.input_params, output_grads, allow_unused=True, ) del ctx.input_tensors del ctx.input_params del output_tensors return ( (None, None, None, None, None) + input_grads[: ctx.end_tensors] + (None,) * (ctx.end_non_tensors - ctx.end_tensors) + input_grads[ctx.end_tensors :] ) ckpt = torch.utils.checkpoint.checkpoint def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: #args = tuple(inputs) + tuple(params) #return CheckpointFunction.apply(func, len(inputs), *args) return ckpt(func, *inputs) else: return func(*inputs) class CheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, length, *args): ctx.run_function = run_function ctx.input_tensors = list(args[:length]) ctx.input_params = list(args[length:]) ctx.gpu_autocast_kwargs = { "enabled": torch.is_autocast_enabled(), "dtype": torch.get_autocast_gpu_dtype(), "cache_enabled": torch.is_autocast_cache_enabled(), } with torch.no_grad(): output_tensors = ctx.run_function(*ctx.input_tensors) return output_tensors @staticmethod def backward(ctx, *output_grads): ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): # Fixes a bug where the first op in run_function modifies the # Tensor storage in place, which is not allowed for detach()'d # Tensors. shallow_copies = [x.view_as(x) for x in ctx.input_tensors] output_tensors = ctx.run_function(*shallow_copies) input_grads = torch.autograd.grad( output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True, ) del ctx.input_tensors del ctx.input_params del output_tensors return (None, None) + input_grads def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 ) else: embedding = repeat(timesteps, "b -> b d", d=dim) return embedding def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def normalization(channels): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(32, channels) # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. class SiLU(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") class AlphaBlender(nn.Module): strategies = ["learned", "fixed", "learned_with_images"] def __init__( self, alpha: float, merge_strategy: str = "learned_with_images", rearrange_pattern: str = "b t -> (b t) 1 1", ): super().__init__() self.merge_strategy = merge_strategy self.rearrange_pattern = rearrange_pattern assert ( merge_strategy in self.strategies ), f"merge_strategy needs to be in {self.strategies}" if self.merge_strategy == "fixed": self.register_buffer("mix_factor", torch.Tensor([alpha])) elif ( self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images" ): self.register_parameter( "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) ) else: raise ValueError(f"unknown merge strategy {self.merge_strategy}") def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: if self.merge_strategy == "fixed": alpha = self.mix_factor elif self.merge_strategy == "learned": alpha = torch.sigmoid(self.mix_factor) elif self.merge_strategy == "learned_with_images": assert image_only_indicator is not None, "need image_only_indicator ..." alpha = torch.where( image_only_indicator.bool(), torch.ones(1, 1, device=image_only_indicator.device), rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), ) alpha = rearrange(alpha, self.rearrange_pattern) else: raise NotImplementedError return alpha def forward( self, x_spatial: torch.Tensor, x_temporal: torch.Tensor, image_only_indicator: Optional[torch.Tensor] = None, ) -> torch.Tensor: alpha = self.get_alpha(image_only_indicator) x = ( alpha.to(x_spatial.dtype) * x_spatial + (1.0 - alpha).to(x_spatial.dtype) * x_temporal ) return x