File size: 28,191 Bytes
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e54e3
674d663
 
 
 
 
0447610
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e54e3
 
 
674d663
 
 
 
 
 
 
 
46062ae
161a2b4
674d663
161a2b4
674d663
161a2b4
674d663
161a2b4
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
 
 
 
 
 
 
674d663
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
161a2b4
674d663
161a2b4
 
 
 
 
 
 
 
 
 
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
 
 
 
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
 
161a2b4
 
674d663
 
161a2b4
674d663
 
161a2b4
 
674d663
 
 
161a2b4
674d663
 
 
 
 
 
 
 
161a2b4
674d663
 
161a2b4
 
 
 
 
 
 
 
 
 
 
 
674d663
 
 
 
 
 
161a2b4
674d663
 
 
 
 
161a2b4
 
 
 
 
 
 
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
 
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
 
 
 
 
 
674d663
 
 
161a2b4
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
161a2b4
 
 
 
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e54e3
 
674d663
161a2b4
33e54e3
674d663
 
 
161a2b4
 
33e54e3
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
 
 
 
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161a2b4
 
674d663
161a2b4
674d663
 
 
 
 
 
 
 
161a2b4
 
674d663
 
161a2b4
674d663
 
 
 
 
 
 
161a2b4
674d663
 
 
 
 
 
 
 
161a2b4
674d663
161a2b4
 
 
 
 
674d663
 
 
 
161a2b4
 
 
 
 
 
674d663
161a2b4
674d663
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import os
import numpy as np
import datetime
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field
import io
import spaces
import base64
from PIL import Image
import gradio as gr
import time
import hashlib

from utils import build_logger
from conversation import conv_seed_llama2

import hydra
import pyrootutils
import torch
import re
import time
from omegaconf import OmegaConf
from flask import Flask
import json
from typing import Optional
import cv2
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler, StableDiffusionImg2ImgPipeline

pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)

BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'

IMG_FLAG = '<image>'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '{instruction}'

resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2',
                    '2x3', '3x2', '2x4', '4x2']
base_resolution = 448

app = Flask(__name__)


def decode_image(encoded_image: str) -> Image:
    decoded_bytes = base64.b64decode(encoded_image.encode('utf-8'))
    buffer = io.BytesIO(decoded_bytes)
    image = Image.open(buffer)
    return image


def encode_image(image: Image.Image, format: str = 'PNG') -> str:
    with io.BytesIO() as buffer:
        image.save(buffer, format=format)
        encoded_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
        return encoded_image


@dataclass
class Arguments:
    image_transform: Optional[str] = field(default='configs/processer/qwen_448_transform.yaml',
                                           metadata={"help": "config path of image transform"})
    tokenizer: Optional[str] = field(default='configs/tokenizer/clm_llama_tokenizer.yaml',
                                     metadata={"help": "config path of tokenizer used to initialize tokenizer"})
    llm: Optional[str] = field(default='configs/clm_models/llama2chat7b_lora.yaml', metadata={"help": "config path of llm"})
    visual_encoder: Optional[str] = field(default='configs/visual_tokenizer/qwen_vitg_448.yaml',
                                          metadata={"help": "config path of visual encoder"})
    sd_adapter: Optional[str] = field(
        default='configs/detokenizer/detokenizer_sdxl_qwen_vit_adapted.yaml',
        metadata={"help": "config path of sd adapter"})
    agent: Optional[str] = field(default='configs/clm_models/agent_7b_sft.yaml',
                                 metadata={"help": "Hugging Face model path of agent model"})
    diffusion_path: Optional[str] = field(default='stabilityai/stable-diffusion-xl-base-1.0',
                                          metadata={"help": "diffusion model path"})
    port: Optional[str] = field(default=80, metadata={"help": "network port"})
    llm_device: Optional[str] = field(default='cuda:0', metadata={"help": "llm device"})
    vit_sd_device: Optional[str] = field(default='cuda:0', metadata={"help": "sd and vit device"})
    dtype: Optional[str] = field(default='fp16', metadata={"help": "mix percision"})


parser = transformers.HfArgumentParser(Arguments)
args, = parser.parse_args_into_dataclasses()


class LLMService:

    def __init__(self, args) -> None:

        self.llm_device = args.llm_device
        self.vit_sd_device = args.vit_sd_device

        dtype = args.dtype
        if dtype == 'fp16':
            self.dtype = torch.float16
        elif dtype == 'bf16':
            self.dtype = torch.bfloat16
        else:
            raise ValueError

        image_transform_cfg = OmegaConf.load(args.image_transform)
        self.image_transform = hydra.utils.instantiate(image_transform_cfg)

        tokenizer_cfg = OmegaConf.load(args.tokenizer)
        self.tokenizer = hydra.utils.instantiate(tokenizer_cfg)

        visual_encoder_cfg = OmegaConf.load(args.visual_encoder)
        self.visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
        self.visual_encoder.eval().to(self.vit_sd_device, dtype=self.dtype)
        print('Init visual encoder done')

        llm_cfg = OmegaConf.load(args.llm)
        llm = hydra.utils.instantiate(llm_cfg, torch_dtype=self.dtype)
        print('Init llm done.')

        agent_cfg = OmegaConf.load(args.agent)
        self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)

        self.agent.eval().to(self.llm_device, dtype=self.dtype)
        self.agent.llm.base_model.model.use_kv_cache_head = False
        print('Init agent mdoel Done')

        noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")

        vae = AutoencoderKL.from_pretrained(args.diffusion_path, subfolder="vae").to(self.vit_sd_device,
                                                                                     dtype=self.dtype)

        unet = UNet2DConditionModel.from_pretrained(args.diffusion_path, subfolder="unet").to(self.vit_sd_device,
                                                                                              dtype=self.dtype)

        sd_adapter_cfg = OmegaConf.load(args.sd_adapter)

        self.sd_adapter = hydra.utils.instantiate(sd_adapter_cfg, unet=unet).eval().to(self.vit_sd_device,
                                                                                       dtype=self.dtype)

        # self.sd_adapter.init_pipe(vae=vae,
        #                           scheduler=noise_scheduler,
        #                           visual_encoder=self.visual_encoder.cpu(),
        #                           image_transform=self.image_transform,
        #                           discrete_model=None,
        #                           dtype=self.dtype,
        #                           device="cpu")

        self.sd_adapter.init_pipe(vae=vae,
                                  scheduler=noise_scheduler,
                                  visual_encoder=self.visual_encoder,
                                  image_transform=self.image_transform,
                                  discrete_model=None,
                                  dtype=self.dtype,
                                  device=self.vit_sd_device)

        print('Init sd adapter pipe done.')

        self.visual_encoder.to(self.vit_sd_device, dtype=self.dtype)

        # model_id_or_path = "stablediffusionapi/realistic-vision-v51"
        # self.vae_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, safety_checker=None,
        #                                                                torch_dtype=torch.float16)

        self.boi_token_id = self.tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
        self.eoi_token_id = self.tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]


service = LLMService(args)


@spaces.GPU(duration=96)
def generate(text_list, image_list, image_embed_list, max_new_tokens):
    with torch.no_grad():
        print('text_list: {}'.format(text_list))
        text_list = text_list.split(IMG_FLAG)
        text_list = [text_list[0]] + ["[INST]"+item for item in text_list[1:-1]] + [text_list[-1]]
        top_p = 0.5
        window_size = 8
        assert len(text_list) == len(image_list) + 1

        image_tokens = BOI_TOKEN + ''.join(
            [IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN

        input_images = []
        if len(image_list) > 0:
            image_tensor_list = []
            embeds_cmp_mask = []
            embeds_gen_mask = []

            for idx, image_item in enumerate(image_list):
                if isinstance(image_item, str):
                    image = decode_image(image_item)
                    print('after decode image size:', image.size)
                    input_images.append(image)

                    image_tensor = service.image_transform(image)
                    image_tensor_list.append(image_tensor)
                    embeds_cmp_mask.append(True)
                    embeds_gen_mask.append(False)
                else:
                    raise ValueError

            # pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
            # 
            # image_embeds = service.visual_encoder(pixel_values)
            # image_embeds = image_embeds.to(service.llm_device)
            print(image_embed_list)
            image_embed_list = [t.squeeze(0) for t in image_embed_list]
            image_embeds = torch.stack(image_embed_list, dim=0)
            image_embeds = image_embeds.to(service.llm_device)

            embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
            embeds_gen_mask = torch.tensor(embeds_gen_mask, dtype=torch.bool).to(service.llm_device)

        else:
            image_embeds = None
            patch_position = 0
            embeds_cmp_mask = None
            embeds_gen_mask = None


        input_text = image_tokens.join(text_list)

        print('input_text fed to LLM:', input_text)
        input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)

        while image_embeds.shape[0] > window_size:
            eoi_prompt_idx = input_text.index(EOI_TOKEN)
            input_text = input_text[eoi_prompt_idx + len(EOI_TOKEN) + len('[INST]'):]
            image_embeds = image_embeds[1:]
            input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)

        if image_embeds is not None:
            embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(service.llm_device, dtype=torch.bool)

        input_ids = [service.tokenizer.bos_token_id] + input_ids

        input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
        ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)
        ids_gen_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)

        boi_indices = torch.where(input_ids == service.boi_token_id)[0].tolist()
        eoi_indices = torch.where(input_ids == service.eoi_token_id)[0].tolist()

        for boi_idx, eoi_idx in zip(boi_indices, eoi_indices):
            ids_cmp_mask[boi_idx + 1:eoi_idx] = True

        input_ids = input_ids.unsqueeze(0)
        ids_cmp_mask = ids_cmp_mask.unsqueeze(0)
        ids_gen_mask = ids_gen_mask.unsqueeze(0)

        error_msg = []
        print('image_embeds_shape: ' + str(image_embeds.shape))
        print('image_embeds: {}'.format(image_embeds))
        print('input_ids: ' + str(input_ids))
        print('ids_cmp_mask: ' + str(ids_cmp_mask))
        output = service.agent.generate(
            tokenizer=service.tokenizer,
            input_ids=input_ids,
            image_embeds=image_embeds,
            embeds_cmp_mask=embeds_cmp_mask,
            ids_cmp_mask=ids_cmp_mask,
            num_img_gen_tokens=num_img_out_tokens,
            max_new_tokens=max_new_tokens,
            dtype=service.dtype,
            device=service.llm_device,
            top_p=top_p,
        )

        gen_imgs_base64_list = []
        generated_text = output['text']

        torch.cuda.empty_cache()

        if output['has_img_output']:
            # print('loading visual encoder and llm to CPU, and sd to GPU')
            # a = time.time()
            # service.agent = service.agent.cpu()
            # service.sd_adapter = service.sd_adapter.to(service.vit_sd_device, dtype=service.dtype)
            # print("Loading finished: ", time.time() - a)

            img_gen_feat = output['img_gen_feat'].to(service.vit_sd_device, dtype=service.dtype)

            for img_idx in range(output['num_gen_imgs']):
                img_feat = img_gen_feat[img_idx:img_idx + 1]
                generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
                gen_imgs_base64_list.append(generated_image)

            # a = time.time()
            # service.sd_adapter = service.sd_adapter.cpu()
            # service.visual_encoder = service.visual_encoder.to(service.vit_sd_device, dtype=service.dtype)
            # service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
            # print("Loading finished: ", time.time() - a)

        print('[func generate inout+output]: {}'.format(input_text + generated_text))
        return {'text': generated_text, 'images': gen_imgs_base64_list, 'image_embeds': img_feat.detach().clone(), 'error_msg': error_msg}


def http_bot(dialog_state, input_state, max_new_tokens, max_length,
             request: gr.Request):
    print('input_state:', input_state)
    print(dialog_state.messages)
    if len(dialog_state.messages) == 0 or len(
            dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
        return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4

    if len(dialog_state.messages) >= max_length:
        output_state = init_input_state()
        output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
        dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
        input_state = init_input_state()
        return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 3 + (enable_btn,)

    prompt = dialog_state.get_prompt()
    text = prompt['text']
    print('text from http_bot: {}'.format(text))
    max_new_tokens = int(max_new_tokens)
    images = prompt['images']
    image_embeds = prompt['image_embeds']

    results = generate(text, images, image_embeds, max_new_tokens)
    generated_text = results['text']
    pattern = r' <img_000\d{2}>'
    # Replace all occurrences of the pattern with the replacement text
    generated_text = re.sub(pattern, '', generated_text)

    generated_text = generated_text.replace(' '+service.tokenizer.eos_token, '')\
        .replace('[INST]', '').replace(' '+BOI_TOKEN, '').replace(' '+EOI_TOKEN, IMG_FLAG)

    results['text'] = generated_text

    print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})

    output_state = init_input_state()
    image_dir = get_conv_image_dir()
    output_state['text'] = results['text']
    output_state['image_embeds'].append(results['image_embeds'])

    for image_base64 in results['images']:
        if image_base64 == '':
            image_path = ''
        else:
            if isinstance(image_base64, Image.Image):
                print('generated image is in Image.Image')
                image = image_base64
            else:
                print('generated image is in Image_base64')
                image = decode_image(image_base64)
                image = image.convert('RGB')
            image_path = get_image_name(image=image, image_dir=image_dir)
            if not os.path.exists(image_path):
                image.save(image_path)
        output_state['images'].append(image_path)

    dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})

    vote_last_response(dialog_state, 'common', request)
    input_state = init_input_state()
    chatbot = update_error_msg(dialog_state.to_gradio_chatbot(), results['error_msg'])
    return (dialog_state, input_state, chatbot) + (enable_btn,) * 4


IMG_FLAG = '<image>'
LOGDIR = 'log'

logger = build_logger("gradio_seed_story", LOGDIR)
headers = {"User-Agent": "SEED-Story Client"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)

conv_seed_llama = conv_seed_llama2


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_conv_image_dir():
    name = os.path.join(LOGDIR, 'images')
    os.makedirs(name, exist_ok=True)
    return name


def get_image_name(image, image_dir=None):
    buffer = io.BytesIO()
    image.save(buffer, format='PNG')
    image_bytes = buffer.getvalue()
    md5 = hashlib.md5(image_bytes).hexdigest()

    if image_dir is not None:
        image_name = os.path.join(image_dir, md5 + '.png')
    else:
        image_name = md5 + '.png'

    return image_name


def resize_image_square(image, target_size=448):
    resized_image = image.resize((target_size, target_size))
    return resized_image


def resize_image(image, max_size=512):
    width, height = image.size
    aspect_ratio = float(width) / float(height)

    if width > height:
        new_width = max_size
        new_height = int(new_width / aspect_ratio)
    else:
        new_height = max_size
        new_width = int(new_height * aspect_ratio)

    resized_image = image.resize((new_width, new_height))
    return resized_image


def center_crop_image(image, max_aspect_ratio=1.5):
    width, height = image.size
    aspect_ratio = max(width, height) / min(width, height)

    if aspect_ratio >= max_aspect_ratio:
        if width > height:
            new_width = int(height * max_aspect_ratio)
            left = (width - new_width) // 2
            right = (width + new_width) // 2
            top = 0
            bottom = height
        else:
            new_height = int(width * max_aspect_ratio)
            left = 0
            right = width
            top = (height - new_height) // 2
            bottom = (height + new_height) // 2

        cropped_image = image.crop((left, top, right, bottom))
        return cropped_image
    else:
        return image


def vote_last_response(state, vote_type, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        print(state)
        print(state.dict())
        dic = state.dict()
        for i in range(len(dic['messages'])):
            dic['messages'][i]['message'].pop('image_embeds')
        print(dic)
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "state": dic,
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, "upvote", request)
    return (disable_btn,) * 2


def downvote_last_response(state, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, "downvote", request)
    return (disable_btn,) * 2


def regenerate(dialog_state, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    if dialog_state.messages[-1]['role'] == dialog_state.roles[1]:
        dialog_state.messages.pop()
    return (
               dialog_state,
               dialog_state.to_gradio_chatbot(),
           ) + (disable_btn,) * 4


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    dialog_state = conv_seed_llama.copy()
    input_state = init_input_state()
    return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4


def init_input_state():
    return {'images': [], 'text': '', 'image_embeds': []}


def add_text(dialog_state, input_state, text, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}.")
    if text is None or len(text) == 0:
        return (dialog_state, input_state, "", dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
    input_state['text'] += text

    if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
        dialog_state.messages[-1]['message'] = input_state
    else:
        dialog_state.messages.append({'role': dialog_state.roles[0], 'message': input_state})
    print('add_text: ', dialog_state.to_gradio_chatbot())

    return (dialog_state, input_state, "", dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4


def is_blank(image):
    image_array = np.array(image)
    unique_colors = np.unique(image_array)
    print('unique_colors', len(unique_colors))
    return len(unique_colors) == 1


def add_image(dialog_state, input_state, image, request: gr.Request):
    logger.info(f"add_image. ip: {request.client.host}.")
    if image is None:
        return (dialog_state, input_state, None, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4

    image = image.convert('RGB')

    print('image size:', image.size)

    # image = center_crop_image(image, max_aspect_ratio=10)

    image_dir = get_conv_image_dir()
    image_path = get_image_name(image=image, image_dir=image_dir)
    if not os.path.exists(image_path):
        image.save(image_path)
    input_state['images'].append(image_path)
    image_tensor = service.image_transform(image).unsqueeze(0).to(service.llm_device, dtype=service.dtype)
    image_embeds = service.visual_encoder(image_tensor).detach().clone()
    image_embeds = image_embeds.to(service.llm_device)
    input_state['image_embeds'].append(image_embeds)
    input_state['text'] += IMG_FLAG

    if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
        dialog_state.messages[-1]['message'] = input_state
    else:
        dialog_state.messages.append({'role': dialog_state.roles[0], 'message': input_state})

    print('add_image:', dialog_state)

    return (dialog_state, input_state, None, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4


def update_error_msg(chatbot, error_msg):
    if len(error_msg) > 0:
        info = '\n-------------\nSome errors occurred during response, please clear history and restart.\n' + '\n'.join(
            error_msg)
        chatbot[-1][-1] = chatbot[-1][-1] + info

    return chatbot


def load_demo(request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}")
    dialog_state = conv_seed_llama.copy()
    input_state = init_input_state()
    return dialog_state, input_state


title = ("""
# SEED-Story
[[Paper]](https://arxiv.org/abs/2407.08683) [[Code]](https://github.com/TencentARC/SEED-Story)

Demo of the multimodal story generation model SEED-Story-George. It is trained on StoryStream-Curious George subset.
SEED-Story is a MLLM capable of generating multimodal long stories consisting of rich and coherent narrative texts, along with images that are consistent in characters and style.

## Tips:
* Check out the conversation examples (at the bottom) for inspiration.
* Our demo requires a mix of an image and a starting sentence as input. You can freely upload an image or enter text, and then click on "Submit". Then, The model generates the next story image and text.
* You can click on "Continue Generation" to make the model generate a next story image and text based on all previous story boards.
* SEED-Story was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
""")

css = """
img {
  font-family: 'Helvetica';
  font-weight: 300;
  line-height: 2;  
  text-align: center;

  width: auto;
  height: auto;
  display: block;
  position: relative;
}
img:before { 
  content: " ";
  display: block;
  position: absolute;
  top: -10px;
  left: 0;
  height: auto;
  width: 100%;
  background-color: rgb(230, 230, 230);
  border: 2px dotted rgb(200, 200, 200);
  border-radius: 5px;
}
img:after { 
  content: " ";
  display: block;
  font-size: 16px;
  font-style: normal;
  font-family: FontAwesome;
  color: rgb(100, 100, 100);

  position: absolute;
  top: 5px;
  left: 0;
  width: 100%;
  text-align: center;
}
"""

if __name__ == '__main__':
    examples_mix = [
        ['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/2.jpg?raw=true',
         'One day, George, the curious brown monkey, decided to explore a new room. He peeked out from behind a dresser, looking both curious and cautious. The dresser had three drawers, each with a round handle. An electrical outlet was visible on the wall.'],
        ['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/4.jpg?raw=true',
         'In the bustling city, a beautiful blue and yellow bird took flight, soaring high above the buildings. Among the clouds, a heart-shaped formation appeared, as if nature was sending a love note to the world below. Other birds joined, their silhouettes dancing in the distance.'],
    ]
    with gr.Blocks(css=css) as demo:
        gr.Markdown(title)
        dialog_state = gr.State()
        input_state = gr.State()
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row():
                    image = gr.Image(type='pil', label='input_image')
                with gr.Row():
                    text = gr.Textbox(lines=5,
                                      show_label=False,
                                      label='input_text',
                                      elem_id='textbox',
                                      placeholder="Enter text and image, and press submit,", container=False)
                with gr.Row():
                    # add_image_btn = gr.Button("Add Image")
                    # add_text_btn = gr.Button("Add Text")
                    submit_btn = gr.Button("Submit")
                    continue_btn = gr.Button("Continue Generation")

                with gr.Row():
                    max_new_tokens = gr.Slider(minimum=64,
                                               maximum=1024,
                                               value=768,
                                               step=64,
                                               interactive=True,
                                               label="Max Output Tokens")
                    max_length = gr.Slider(minimum=1, maximum=30, value=10, step=1, interactive=True,
                                          label="Max Story Length")

            with gr.Column(scale=7):
                chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-Story", height=700)
                with gr.Row():
                    upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=False)
                    regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=False)

        with gr.Row():
            with gr.Column(scale=1.0):
                gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
        upvote_btn.click(upvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
        downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])

        regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
            http_bot, [dialog_state, input_state, max_new_tokens, max_length],
            [dialog_state, input_state, chatbot] + btn_list)
        # add_image_btn.click(add_image, [dialog_state, input_state, image],
        #                     [dialog_state, input_state, image, chatbot] + btn_list)
        #
        # add_text_btn.click(add_text, [dialog_state, input_state, text],
        #                    [dialog_state, input_state, text, chatbot] + btn_list)

        submit_btn.click(
            add_text, [dialog_state, input_state, text],
            [dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
            add_image, [dialog_state, input_state, image],
            [dialog_state, input_state, image, chatbot] + btn_list).then(
            http_bot,
            [dialog_state, input_state, max_new_tokens, max_length],
            [dialog_state, input_state, chatbot] + btn_list)
        continue_btn.click(
            http_bot,
            [dialog_state, input_state, max_new_tokens, max_length],
            [dialog_state, input_state, chatbot] + btn_list)
        clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)

        demo.load(load_demo, None, [dialog_state, input_state])

    demo.launch(debug=True)