Spaces:
Runtime error
Runtime error
File size: 28,191 Bytes
674d663 161a2b4 674d663 33e54e3 674d663 0447610 674d663 161a2b4 674d663 33e54e3 674d663 46062ae 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 33e54e3 674d663 161a2b4 33e54e3 674d663 161a2b4 33e54e3 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 161a2b4 674d663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
import os
import numpy as np
import datetime
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field
import io
import spaces
import base64
from PIL import Image
import gradio as gr
import time
import hashlib
from utils import build_logger
from conversation import conv_seed_llama2
import hydra
import pyrootutils
import torch
import re
import time
from omegaconf import OmegaConf
from flask import Flask
import json
from typing import Optional
import cv2
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler, StableDiffusionImg2ImgPipeline
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'
IMG_FLAG = '<image>'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '{instruction}'
resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2',
'2x3', '3x2', '2x4', '4x2']
base_resolution = 448
app = Flask(__name__)
def decode_image(encoded_image: str) -> Image:
decoded_bytes = base64.b64decode(encoded_image.encode('utf-8'))
buffer = io.BytesIO(decoded_bytes)
image = Image.open(buffer)
return image
def encode_image(image: Image.Image, format: str = 'PNG') -> str:
with io.BytesIO() as buffer:
image.save(buffer, format=format)
encoded_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
return encoded_image
@dataclass
class Arguments:
image_transform: Optional[str] = field(default='configs/processer/qwen_448_transform.yaml',
metadata={"help": "config path of image transform"})
tokenizer: Optional[str] = field(default='configs/tokenizer/clm_llama_tokenizer.yaml',
metadata={"help": "config path of tokenizer used to initialize tokenizer"})
llm: Optional[str] = field(default='configs/clm_models/llama2chat7b_lora.yaml', metadata={"help": "config path of llm"})
visual_encoder: Optional[str] = field(default='configs/visual_tokenizer/qwen_vitg_448.yaml',
metadata={"help": "config path of visual encoder"})
sd_adapter: Optional[str] = field(
default='configs/detokenizer/detokenizer_sdxl_qwen_vit_adapted.yaml',
metadata={"help": "config path of sd adapter"})
agent: Optional[str] = field(default='configs/clm_models/agent_7b_sft.yaml',
metadata={"help": "Hugging Face model path of agent model"})
diffusion_path: Optional[str] = field(default='stabilityai/stable-diffusion-xl-base-1.0',
metadata={"help": "diffusion model path"})
port: Optional[str] = field(default=80, metadata={"help": "network port"})
llm_device: Optional[str] = field(default='cuda:0', metadata={"help": "llm device"})
vit_sd_device: Optional[str] = field(default='cuda:0', metadata={"help": "sd and vit device"})
dtype: Optional[str] = field(default='fp16', metadata={"help": "mix percision"})
parser = transformers.HfArgumentParser(Arguments)
args, = parser.parse_args_into_dataclasses()
class LLMService:
def __init__(self, args) -> None:
self.llm_device = args.llm_device
self.vit_sd_device = args.vit_sd_device
dtype = args.dtype
if dtype == 'fp16':
self.dtype = torch.float16
elif dtype == 'bf16':
self.dtype = torch.bfloat16
else:
raise ValueError
image_transform_cfg = OmegaConf.load(args.image_transform)
self.image_transform = hydra.utils.instantiate(image_transform_cfg)
tokenizer_cfg = OmegaConf.load(args.tokenizer)
self.tokenizer = hydra.utils.instantiate(tokenizer_cfg)
visual_encoder_cfg = OmegaConf.load(args.visual_encoder)
self.visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
self.visual_encoder.eval().to(self.vit_sd_device, dtype=self.dtype)
print('Init visual encoder done')
llm_cfg = OmegaConf.load(args.llm)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=self.dtype)
print('Init llm done.')
agent_cfg = OmegaConf.load(args.agent)
self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)
self.agent.eval().to(self.llm_device, dtype=self.dtype)
self.agent.llm.base_model.model.use_kv_cache_head = False
print('Init agent mdoel Done')
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(args.diffusion_path, subfolder="vae").to(self.vit_sd_device,
dtype=self.dtype)
unet = UNet2DConditionModel.from_pretrained(args.diffusion_path, subfolder="unet").to(self.vit_sd_device,
dtype=self.dtype)
sd_adapter_cfg = OmegaConf.load(args.sd_adapter)
self.sd_adapter = hydra.utils.instantiate(sd_adapter_cfg, unet=unet).eval().to(self.vit_sd_device,
dtype=self.dtype)
# self.sd_adapter.init_pipe(vae=vae,
# scheduler=noise_scheduler,
# visual_encoder=self.visual_encoder.cpu(),
# image_transform=self.image_transform,
# discrete_model=None,
# dtype=self.dtype,
# device="cpu")
self.sd_adapter.init_pipe(vae=vae,
scheduler=noise_scheduler,
visual_encoder=self.visual_encoder,
image_transform=self.image_transform,
discrete_model=None,
dtype=self.dtype,
device=self.vit_sd_device)
print('Init sd adapter pipe done.')
self.visual_encoder.to(self.vit_sd_device, dtype=self.dtype)
# model_id_or_path = "stablediffusionapi/realistic-vision-v51"
# self.vae_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, safety_checker=None,
# torch_dtype=torch.float16)
self.boi_token_id = self.tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
self.eoi_token_id = self.tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
service = LLMService(args)
@spaces.GPU(duration=96)
def generate(text_list, image_list, image_embed_list, max_new_tokens):
with torch.no_grad():
print('text_list: {}'.format(text_list))
text_list = text_list.split(IMG_FLAG)
text_list = [text_list[0]] + ["[INST]"+item for item in text_list[1:-1]] + [text_list[-1]]
top_p = 0.5
window_size = 8
assert len(text_list) == len(image_list) + 1
image_tokens = BOI_TOKEN + ''.join(
[IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN
input_images = []
if len(image_list) > 0:
image_tensor_list = []
embeds_cmp_mask = []
embeds_gen_mask = []
for idx, image_item in enumerate(image_list):
if isinstance(image_item, str):
image = decode_image(image_item)
print('after decode image size:', image.size)
input_images.append(image)
image_tensor = service.image_transform(image)
image_tensor_list.append(image_tensor)
embeds_cmp_mask.append(True)
embeds_gen_mask.append(False)
else:
raise ValueError
# pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
#
# image_embeds = service.visual_encoder(pixel_values)
# image_embeds = image_embeds.to(service.llm_device)
print(image_embed_list)
image_embed_list = [t.squeeze(0) for t in image_embed_list]
image_embeds = torch.stack(image_embed_list, dim=0)
image_embeds = image_embeds.to(service.llm_device)
embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
embeds_gen_mask = torch.tensor(embeds_gen_mask, dtype=torch.bool).to(service.llm_device)
else:
image_embeds = None
patch_position = 0
embeds_cmp_mask = None
embeds_gen_mask = None
input_text = image_tokens.join(text_list)
print('input_text fed to LLM:', input_text)
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
while image_embeds.shape[0] > window_size:
eoi_prompt_idx = input_text.index(EOI_TOKEN)
input_text = input_text[eoi_prompt_idx + len(EOI_TOKEN) + len('[INST]'):]
image_embeds = image_embeds[1:]
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
if image_embeds is not None:
embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(service.llm_device, dtype=torch.bool)
input_ids = [service.tokenizer.bos_token_id] + input_ids
input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)
ids_gen_mask = torch.zeros_like(input_ids, dtype=torch.bool).to(service.llm_device)
boi_indices = torch.where(input_ids == service.boi_token_id)[0].tolist()
eoi_indices = torch.where(input_ids == service.eoi_token_id)[0].tolist()
for boi_idx, eoi_idx in zip(boi_indices, eoi_indices):
ids_cmp_mask[boi_idx + 1:eoi_idx] = True
input_ids = input_ids.unsqueeze(0)
ids_cmp_mask = ids_cmp_mask.unsqueeze(0)
ids_gen_mask = ids_gen_mask.unsqueeze(0)
error_msg = []
print('image_embeds_shape: ' + str(image_embeds.shape))
print('image_embeds: {}'.format(image_embeds))
print('input_ids: ' + str(input_ids))
print('ids_cmp_mask: ' + str(ids_cmp_mask))
output = service.agent.generate(
tokenizer=service.tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
num_img_gen_tokens=num_img_out_tokens,
max_new_tokens=max_new_tokens,
dtype=service.dtype,
device=service.llm_device,
top_p=top_p,
)
gen_imgs_base64_list = []
generated_text = output['text']
torch.cuda.empty_cache()
if output['has_img_output']:
# print('loading visual encoder and llm to CPU, and sd to GPU')
# a = time.time()
# service.agent = service.agent.cpu()
# service.sd_adapter = service.sd_adapter.to(service.vit_sd_device, dtype=service.dtype)
# print("Loading finished: ", time.time() - a)
img_gen_feat = output['img_gen_feat'].to(service.vit_sd_device, dtype=service.dtype)
for img_idx in range(output['num_gen_imgs']):
img_feat = img_gen_feat[img_idx:img_idx + 1]
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
gen_imgs_base64_list.append(generated_image)
# a = time.time()
# service.sd_adapter = service.sd_adapter.cpu()
# service.visual_encoder = service.visual_encoder.to(service.vit_sd_device, dtype=service.dtype)
# service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
# print("Loading finished: ", time.time() - a)
print('[func generate inout+output]: {}'.format(input_text + generated_text))
return {'text': generated_text, 'images': gen_imgs_base64_list, 'image_embeds': img_feat.detach().clone(), 'error_msg': error_msg}
def http_bot(dialog_state, input_state, max_new_tokens, max_length,
request: gr.Request):
print('input_state:', input_state)
print(dialog_state.messages)
if len(dialog_state.messages) == 0 or len(
dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
if len(dialog_state.messages) >= max_length:
output_state = init_input_state()
output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
input_state = init_input_state()
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 3 + (enable_btn,)
prompt = dialog_state.get_prompt()
text = prompt['text']
print('text from http_bot: {}'.format(text))
max_new_tokens = int(max_new_tokens)
images = prompt['images']
image_embeds = prompt['image_embeds']
results = generate(text, images, image_embeds, max_new_tokens)
generated_text = results['text']
pattern = r' <img_000\d{2}>'
# Replace all occurrences of the pattern with the replacement text
generated_text = re.sub(pattern, '', generated_text)
generated_text = generated_text.replace(' '+service.tokenizer.eos_token, '')\
.replace('[INST]', '').replace(' '+BOI_TOKEN, '').replace(' '+EOI_TOKEN, IMG_FLAG)
results['text'] = generated_text
print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})
output_state = init_input_state()
image_dir = get_conv_image_dir()
output_state['text'] = results['text']
output_state['image_embeds'].append(results['image_embeds'])
for image_base64 in results['images']:
if image_base64 == '':
image_path = ''
else:
if isinstance(image_base64, Image.Image):
print('generated image is in Image.Image')
image = image_base64
else:
print('generated image is in Image_base64')
image = decode_image(image_base64)
image = image.convert('RGB')
image_path = get_image_name(image=image, image_dir=image_dir)
if not os.path.exists(image_path):
image.save(image_path)
output_state['images'].append(image_path)
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
vote_last_response(dialog_state, 'common', request)
input_state = init_input_state()
chatbot = update_error_msg(dialog_state.to_gradio_chatbot(), results['error_msg'])
return (dialog_state, input_state, chatbot) + (enable_btn,) * 4
IMG_FLAG = '<image>'
LOGDIR = 'log'
logger = build_logger("gradio_seed_story", LOGDIR)
headers = {"User-Agent": "SEED-Story Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
conv_seed_llama = conv_seed_llama2
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_conv_image_dir():
name = os.path.join(LOGDIR, 'images')
os.makedirs(name, exist_ok=True)
return name
def get_image_name(image, image_dir=None):
buffer = io.BytesIO()
image.save(buffer, format='PNG')
image_bytes = buffer.getvalue()
md5 = hashlib.md5(image_bytes).hexdigest()
if image_dir is not None:
image_name = os.path.join(image_dir, md5 + '.png')
else:
image_name = md5 + '.png'
return image_name
def resize_image_square(image, target_size=448):
resized_image = image.resize((target_size, target_size))
return resized_image
def resize_image(image, max_size=512):
width, height = image.size
aspect_ratio = float(width) / float(height)
if width > height:
new_width = max_size
new_height = int(new_width / aspect_ratio)
else:
new_height = max_size
new_width = int(new_height * aspect_ratio)
resized_image = image.resize((new_width, new_height))
return resized_image
def center_crop_image(image, max_aspect_ratio=1.5):
width, height = image.size
aspect_ratio = max(width, height) / min(width, height)
if aspect_ratio >= max_aspect_ratio:
if width > height:
new_width = int(height * max_aspect_ratio)
left = (width - new_width) // 2
right = (width + new_width) // 2
top = 0
bottom = height
else:
new_height = int(width * max_aspect_ratio)
left = 0
right = width
top = (height - new_height) // 2
bottom = (height + new_height) // 2
cropped_image = image.crop((left, top, right, bottom))
return cropped_image
else:
return image
def vote_last_response(state, vote_type, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
print(state)
print(state.dict())
dic = state.dict()
for i in range(len(dic['messages'])):
dic['messages'][i]['message'].pop('image_embeds')
print(dic)
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"state": dic,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", request)
return (disable_btn,) * 2
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", request)
return (disable_btn,) * 2
def regenerate(dialog_state, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
if dialog_state.messages[-1]['role'] == dialog_state.roles[1]:
dialog_state.messages.pop()
return (
dialog_state,
dialog_state.to_gradio_chatbot(),
) + (disable_btn,) * 4
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
dialog_state = conv_seed_llama.copy()
input_state = init_input_state()
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4
def init_input_state():
return {'images': [], 'text': '', 'image_embeds': []}
def add_text(dialog_state, input_state, text, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}.")
if text is None or len(text) == 0:
return (dialog_state, input_state, "", dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
input_state['text'] += text
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
dialog_state.messages[-1]['message'] = input_state
else:
dialog_state.messages.append({'role': dialog_state.roles[0], 'message': input_state})
print('add_text: ', dialog_state.to_gradio_chatbot())
return (dialog_state, input_state, "", dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4
def is_blank(image):
image_array = np.array(image)
unique_colors = np.unique(image_array)
print('unique_colors', len(unique_colors))
return len(unique_colors) == 1
def add_image(dialog_state, input_state, image, request: gr.Request):
logger.info(f"add_image. ip: {request.client.host}.")
if image is None:
return (dialog_state, input_state, None, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
image = image.convert('RGB')
print('image size:', image.size)
# image = center_crop_image(image, max_aspect_ratio=10)
image_dir = get_conv_image_dir()
image_path = get_image_name(image=image, image_dir=image_dir)
if not os.path.exists(image_path):
image.save(image_path)
input_state['images'].append(image_path)
image_tensor = service.image_transform(image).unsqueeze(0).to(service.llm_device, dtype=service.dtype)
image_embeds = service.visual_encoder(image_tensor).detach().clone()
image_embeds = image_embeds.to(service.llm_device)
input_state['image_embeds'].append(image_embeds)
input_state['text'] += IMG_FLAG
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
dialog_state.messages[-1]['message'] = input_state
else:
dialog_state.messages.append({'role': dialog_state.roles[0], 'message': input_state})
print('add_image:', dialog_state)
return (dialog_state, input_state, None, dialog_state.to_gradio_chatbot()) + (disable_btn,) * 4
def update_error_msg(chatbot, error_msg):
if len(error_msg) > 0:
info = '\n-------------\nSome errors occurred during response, please clear history and restart.\n' + '\n'.join(
error_msg)
chatbot[-1][-1] = chatbot[-1][-1] + info
return chatbot
def load_demo(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
dialog_state = conv_seed_llama.copy()
input_state = init_input_state()
return dialog_state, input_state
title = ("""
# SEED-Story
[[Paper]](https://arxiv.org/abs/2407.08683) [[Code]](https://github.com/TencentARC/SEED-Story)
Demo of the multimodal story generation model SEED-Story-George. It is trained on StoryStream-Curious George subset.
SEED-Story is a MLLM capable of generating multimodal long stories consisting of rich and coherent narrative texts, along with images that are consistent in characters and style.
## Tips:
* Check out the conversation examples (at the bottom) for inspiration.
* Our demo requires a mix of an image and a starting sentence as input. You can freely upload an image or enter text, and then click on "Submit". Then, The model generates the next story image and text.
* You can click on "Continue Generation" to make the model generate a next story image and text based on all previous story boards.
* SEED-Story was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
""")
css = """
img {
font-family: 'Helvetica';
font-weight: 300;
line-height: 2;
text-align: center;
width: auto;
height: auto;
display: block;
position: relative;
}
img:before {
content: " ";
display: block;
position: absolute;
top: -10px;
left: 0;
height: auto;
width: 100%;
background-color: rgb(230, 230, 230);
border: 2px dotted rgb(200, 200, 200);
border-radius: 5px;
}
img:after {
content: " ";
display: block;
font-size: 16px;
font-style: normal;
font-family: FontAwesome;
color: rgb(100, 100, 100);
position: absolute;
top: 5px;
left: 0;
width: 100%;
text-align: center;
}
"""
if __name__ == '__main__':
examples_mix = [
['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/2.jpg?raw=true',
'One day, George, the curious brown monkey, decided to explore a new room. He peeked out from behind a dresser, looking both curious and cautious. The dresser had three drawers, each with a round handle. An electrical outlet was visible on the wall.'],
['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/4.jpg?raw=true',
'In the bustling city, a beautiful blue and yellow bird took flight, soaring high above the buildings. Among the clouds, a heart-shaped formation appeared, as if nature was sending a love note to the world below. Other birds joined, their silhouettes dancing in the distance.'],
]
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
dialog_state = gr.State()
input_state = gr.State()
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
image = gr.Image(type='pil', label='input_image')
with gr.Row():
text = gr.Textbox(lines=5,
show_label=False,
label='input_text',
elem_id='textbox',
placeholder="Enter text and image, and press submit,", container=False)
with gr.Row():
# add_image_btn = gr.Button("Add Image")
# add_text_btn = gr.Button("Add Text")
submit_btn = gr.Button("Submit")
continue_btn = gr.Button("Continue Generation")
with gr.Row():
max_new_tokens = gr.Slider(minimum=64,
maximum=1024,
value=768,
step=64,
interactive=True,
label="Max Output Tokens")
max_length = gr.Slider(minimum=1, maximum=30, value=10, step=1, interactive=True,
label="Max Story Length")
with gr.Column(scale=7):
chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-Story", height=700)
with gr.Row():
upvote_btn = gr.Button(value="π Upvote", interactive=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False)
with gr.Row():
with gr.Column(scale=1.0):
gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
http_bot, [dialog_state, input_state, max_new_tokens, max_length],
[dialog_state, input_state, chatbot] + btn_list)
# add_image_btn.click(add_image, [dialog_state, input_state, image],
# [dialog_state, input_state, image, chatbot] + btn_list)
#
# add_text_btn.click(add_text, [dialog_state, input_state, text],
# [dialog_state, input_state, text, chatbot] + btn_list)
submit_btn.click(
add_text, [dialog_state, input_state, text],
[dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
add_image, [dialog_state, input_state, image],
[dialog_state, input_state, image, chatbot] + btn_list).then(
http_bot,
[dialog_state, input_state, max_new_tokens, max_length],
[dialog_state, input_state, chatbot] + btn_list)
continue_btn.click(
http_bot,
[dialog_state, input_state, max_new_tokens, max_length],
[dialog_state, input_state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)
demo.load(load_demo, None, [dialog_state, input_state])
demo.launch(debug=True) |