Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
import PIL.Image
|
8 |
import torch
|
9 |
import torchvision.transforms.functional as TF
|
10 |
-
from diffusers import
|
11 |
|
12 |
DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
|
13 |
|
@@ -65,7 +65,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
65 |
if torch.cuda.is_available():
|
66 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
67 |
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16")
|
68 |
-
scheduler =
|
69 |
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
70 |
model_id,
|
71 |
adapter=adapter,
|
@@ -115,7 +115,7 @@ def run(
|
|
115 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
116 |
cond_tau=cond_tau,
|
117 |
).images[0]
|
118 |
-
return out
|
119 |
|
120 |
|
121 |
with gr.Blocks() as demo:
|
@@ -141,7 +141,7 @@ with gr.Blocks() as demo:
|
|
141 |
label="Style"
|
142 |
)
|
143 |
negative_prompt = gr.Textbox(
|
144 |
-
label="Negative prompt", value="
|
145 |
)
|
146 |
num_steps = gr.Slider(
|
147 |
label="Number of steps",
|
@@ -180,7 +180,8 @@ with gr.Blocks() as demo:
|
|
180 |
)
|
181 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
182 |
with gr.Column():
|
183 |
-
result = gr.Image(label="Result", height=600)
|
|
|
184 |
|
185 |
inputs = [
|
186 |
image,
|
|
|
7 |
import PIL.Image
|
8 |
import torch
|
9 |
import torchvision.transforms.functional as TF
|
10 |
+
from diffusers import EulerAncestralDiscreteScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter
|
11 |
|
12 |
DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
|
13 |
|
|
|
65 |
if torch.cuda.is_available():
|
66 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
67 |
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16")
|
68 |
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
69 |
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
70 |
model_id,
|
71 |
adapter=adapter,
|
|
|
115 |
adapter_conditioning_scale=adapter_conditioning_scale,
|
116 |
cond_tau=cond_tau,
|
117 |
).images[0]
|
118 |
+
return out, image
|
119 |
|
120 |
|
121 |
with gr.Blocks() as demo:
|
|
|
141 |
label="Style"
|
142 |
)
|
143 |
negative_prompt = gr.Textbox(
|
144 |
+
label="Negative prompt", value=""
|
145 |
)
|
146 |
num_steps = gr.Slider(
|
147 |
label="Number of steps",
|
|
|
180 |
)
|
181 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
182 |
with gr.Column():
|
183 |
+
# result = gr.Image(label="Result", height=600)
|
184 |
+
result = gr.Gallery(label="Result").style(grid=(1,2))
|
185 |
|
186 |
inputs = [
|
187 |
image,
|