valhalla commited on
Commit
edb91ec
1 Parent(s): 083dcc6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -7,7 +7,7 @@ import numpy as np
7
  import PIL.Image
8
  import torch
9
  import torchvision.transforms.functional as TF
10
- from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter
11
 
12
  DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
13
 
@@ -65,7 +65,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
65
  if torch.cuda.is_available():
66
  model_id = "stabilityai/stable-diffusion-xl-base-1.0"
67
  adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16")
68
- scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
69
  pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
70
  model_id,
71
  adapter=adapter,
@@ -115,7 +115,7 @@ def run(
115
  adapter_conditioning_scale=adapter_conditioning_scale,
116
  cond_tau=cond_tau,
117
  ).images[0]
118
- return out
119
 
120
 
121
  with gr.Blocks() as demo:
@@ -141,7 +141,7 @@ with gr.Blocks() as demo:
141
  label="Style"
142
  )
143
  negative_prompt = gr.Textbox(
144
- label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality"
145
  )
146
  num_steps = gr.Slider(
147
  label="Number of steps",
@@ -180,7 +180,8 @@ with gr.Blocks() as demo:
180
  )
181
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
182
  with gr.Column():
183
- result = gr.Image(label="Result", height=600)
 
184
 
185
  inputs = [
186
  image,
 
7
  import PIL.Image
8
  import torch
9
  import torchvision.transforms.functional as TF
10
+ from diffusers import EulerAncestralDiscreteScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter
11
 
12
  DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
13
 
 
65
  if torch.cuda.is_available():
66
  model_id = "stabilityai/stable-diffusion-xl-base-1.0"
67
  adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16")
68
+ scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
69
  pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
70
  model_id,
71
  adapter=adapter,
 
115
  adapter_conditioning_scale=adapter_conditioning_scale,
116
  cond_tau=cond_tau,
117
  ).images[0]
118
+ return out, image
119
 
120
 
121
  with gr.Blocks() as demo:
 
141
  label="Style"
142
  )
143
  negative_prompt = gr.Textbox(
144
+ label="Negative prompt", value=""
145
  )
146
  num_steps = gr.Slider(
147
  label="Number of steps",
 
180
  )
181
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
182
  with gr.Column():
183
+ # result = gr.Image(label="Result", height=600)
184
+ result = gr.Gallery(label="Result").style(grid=(1,2))
185
 
186
  inputs = [
187
  image,