Spaces:
Runtime error
Runtime error
File size: 11,837 Bytes
bb7edb9 2b755c2 c1b5cda 3494400 2ddc02c c1b5cda 2ddc02c 3494400 c1b5cda 2ddc02c c1b5cda d955f0e c1b5cda 2483fe6 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 15680c5 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 1878ed0 2b755c2 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2483fe6 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 2483fe6 2b755c2 8f873ac 2b755c2 8f873ac 2b755c2 3494400 5e63b46 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 2483fe6 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 c628a76 376f4dc 2b755c2 bb7edb9 2b755c2 bb7edb9 2b755c2 c1b5cda 2b755c2 376f4dc 2b755c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import gc
import os
from abc import ABC, abstractmethod
import PIL.Image
import torch
from controlnet_aux import (
CannyDetector,
LineartDetector,
MidasDetector,
PidiNetDetector,
ZoeDetector,
)
from diffusers import (
AutoencoderKL,
EulerAncestralDiscreteScheduler,
StableDiffusionXLAdapterPipeline,
T2IAdapter,
)
SD_XL_BASE_RATIOS = {
"0.5": (704, 1408),
"0.52": (704, 1344),
"0.57": (768, 1344),
"0.6": (768, 1280),
"0.68": (832, 1216),
"0.72": (832, 1152),
"0.78": (896, 1152),
"0.82": (896, 1088),
"0.88": (960, 1088),
"0.94": (960, 1024),
"1.0": (1024, 1024),
"1.07": (1024, 960),
"1.13": (1088, 960),
"1.21": (1088, 896),
"1.29": (1152, 896),
"1.38": (1152, 832),
"1.46": (1216, 832),
"1.67": (1280, 768),
"1.75": (1344, 768),
"1.91": (1344, 704),
"2.0": (1408, 704),
"2.09": (1472, 704),
"2.4": (1536, 640),
"2.5": (1600, 640),
"2.89": (1664, 576),
"3.0": (1728, 576),
}
def find_closest_aspect_ratio(target_width: int, target_height: int) -> str:
target_ratio = target_width / target_height
closest_ratio = ""
min_difference = float("inf")
for ratio_str, (width, height) in SD_XL_BASE_RATIOS.items():
ratio = width / height
difference = abs(target_ratio - ratio)
if difference < min_difference:
min_difference = difference
closest_ratio = ratio_str
return closest_ratio
def resize_to_closest_aspect_ratio(image: PIL.Image.Image) -> PIL.Image.Image:
target_width, target_height = image.size
closest_ratio = find_closest_aspect_ratio(target_width, target_height)
# Get the dimensions from the closest aspect ratio in the dictionary
new_width, new_height = SD_XL_BASE_RATIOS[closest_ratio]
# Resize the image to the new dimensions while preserving the aspect ratio
resized_image = image.resize((new_width, new_height), PIL.Image.LANCZOS)
return resized_image
ADAPTER_REPO_IDS = {
"canny": "TencentARC/t2i-adapter-canny-sdxl-1.0",
"sketch": "TencentARC/t2i-adapter-sketch-sdxl-1.0",
"lineart": "TencentARC/t2i-adapter-lineart-sdxl-1.0",
"depth-midas": "TencentARC/t2i-adapter-depth-midas-sdxl-1.0",
"depth-zoe": "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0",
# "recolor": "TencentARC/t2i-adapter-recolor-sdxl-1.0",
}
ADAPTER_NAMES = list(ADAPTER_REPO_IDS.keys())
class Preprocessor(ABC):
@abstractmethod
def to(self, device: torch.device | str) -> "Preprocessor":
pass
@abstractmethod
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
pass
class CannyPreprocessor(Preprocessor):
def __init__(self):
self.model = CannyDetector()
def to(self, device: torch.device | str) -> Preprocessor:
return self
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
return self.model(image, detect_resolution=384, image_resolution=1024)
class LineartPreprocessor(Preprocessor):
def __init__(self):
self.model = LineartDetector.from_pretrained("lllyasviel/Annotators")
def to(self, device: torch.device | str) -> Preprocessor:
return self.model.to(device)
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
return self.model(image, detect_resolution=384, image_resolution=1024)
class MidasPreprocessor(Preprocessor):
def __init__(self):
self.model = MidasDetector.from_pretrained(
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
)
def to(self, device: torch.device | str) -> Preprocessor:
return self.model.to(device)
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
return self.model(image, detect_resolution=512, image_resolution=1024)
class PidiNetPreprocessor(Preprocessor):
def __init__(self):
self.model = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
def to(self, device: torch.device | str) -> Preprocessor:
return self.model.to(device)
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
return self.model(image, detect_resolution=512, image_resolution=1024, apply_filter=True)
class RecolorPreprocessor(Preprocessor):
def to(self, device: torch.device | str) -> Preprocessor:
return self
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
return image.convert("L").convert("RGB")
class ZoePreprocessor(Preprocessor):
def __init__(self):
self.model = ZoeDetector.from_pretrained(
"valhalla/t2iadapter-aux-models", filename="zoed_nk.pth", model_type="zoedepth_nk"
)
def to(self, device: torch.device | str) -> Preprocessor:
return self.model.to(device)
def __call__(self, image: PIL.Image.Image) -> PIL.Image.Image:
return self.model(image, gamma_corrected=True, image_resolution=1024)
PRELOAD_PREPROCESSORS_IN_GPU_MEMORY = os.getenv("PRELOAD_PREPROCESSORS_IN_GPU_MEMORY", "1") == "1"
PRELOAD_PREPROCESSORS_IN_CPU_MEMORY = os.getenv("PRELOAD_PREPROCESSORS_IN_CPU_MEMORY", "0") == "1"
if PRELOAD_PREPROCESSORS_IN_GPU_MEMORY:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
preprocessors_gpu: dict[str, Preprocessor] = {
"canny": CannyPreprocessor().to(device),
"sketch": PidiNetPreprocessor().to(device),
"lineart": LineartPreprocessor().to(device),
"depth-midas": MidasPreprocessor().to(device),
"depth-zoe": ZoePreprocessor().to(device),
"recolor": RecolorPreprocessor().to(device),
}
def get_preprocessor(adapter_name: str) -> Preprocessor:
return preprocessors_gpu[adapter_name]
elif PRELOAD_PREPROCESSORS_IN_CPU_MEMORY:
preprocessors_cpu: dict[str, Preprocessor] = {
"canny": CannyPreprocessor(),
"sketch": PidiNetPreprocessor(),
"lineart": LineartPreprocessor(),
"depth-midas": MidasPreprocessor(),
"depth-zoe": ZoePreprocessor(),
"recolor": RecolorPreprocessor(),
}
def get_preprocessor(adapter_name: str) -> Preprocessor:
return preprocessors_cpu[adapter_name]
else:
def get_preprocessor(adapter_name: str) -> Preprocessor:
if adapter_name == "canny":
return CannyPreprocessor()
elif adapter_name == "sketch":
return PidiNetPreprocessor()
elif adapter_name == "lineart":
return LineartPreprocessor()
elif adapter_name == "depth-midas":
return MidasPreprocessor()
elif adapter_name == "depth-zoe":
return ZoePreprocessor()
elif adapter_name == "recolor":
return RecolorPreprocessor()
else:
raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")
def download_all_preprocessors():
for adapter_name in ADAPTER_NAMES:
get_preprocessor(adapter_name)
gc.collect()
download_all_preprocessors()
def download_all_adapters():
for adapter_name in ADAPTER_NAMES:
T2IAdapter.from_pretrained(
ADAPTER_REPO_IDS[adapter_name],
torch_dtype=torch.float16,
varient="fp16",
)
gc.collect()
download_all_adapters()
class Model:
MAX_NUM_INFERENCE_STEPS = 50
def __init__(self, adapter_name: str):
if adapter_name not in ADAPTER_NAMES:
raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")
self.preprocessor_name = adapter_name
self.adapter_name = adapter_name
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
self.preprocessor = get_preprocessor(adapter_name).to(self.device)
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained(
ADAPTER_REPO_IDS[adapter_name],
torch_dtype=torch.float16,
varient="fp16",
).to(self.device)
self.pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id,
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
adapter=adapter,
scheduler=EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler"),
torch_dtype=torch.float16,
variant="fp16",
).to(self.device)
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.load_lora_weights(
"stabilityai/stable-diffusion-xl-base-1.0", weight_name="sd_xl_offset_example-lora_1.0.safetensors"
)
self.pipe.fuse_lora(lora_scale=0.4)
else:
self.preprocessor = None # type: ignore
self.pipe = None
def change_preprocessor(self, adapter_name: str) -> None:
if adapter_name not in ADAPTER_NAMES:
raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")
if adapter_name == self.preprocessor_name:
return
if PRELOAD_PREPROCESSORS_IN_GPU_MEMORY:
pass
elif PRELOAD_PREPROCESSORS_IN_CPU_MEMORY:
self.preprocessor.to("cpu")
else:
del self.preprocessor
self.preprocessor = get_preprocessor(adapter_name).to(self.device)
self.preprocessor_name = adapter_name
gc.collect()
torch.cuda.empty_cache()
def change_adapter(self, adapter_name: str) -> None:
if adapter_name not in ADAPTER_NAMES:
raise ValueError(f"Adapter name must be one of {ADAPTER_NAMES}")
if adapter_name == self.adapter_name:
return
self.pipe.adapter = T2IAdapter.from_pretrained(
ADAPTER_REPO_IDS[adapter_name],
torch_dtype=torch.float16,
varient="fp16",
).to(self.device)
self.adapter_name = adapter_name
gc.collect()
torch.cuda.empty_cache()
def resize_image(self, image: PIL.Image.Image) -> PIL.Image.Image:
w, h = image.size
scale = 1024 / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
return image.resize((new_w, new_h), PIL.Image.LANCZOS)
def run(
self,
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
adapter_name: str,
num_inference_steps: int = 30,
guidance_scale: float = 5.0,
adapter_conditioning_scale: float = 1.0,
adapter_conditioning_factor: float = 1.0,
seed: int = 0,
apply_preprocess: bool = True,
) -> list[PIL.Image.Image]:
if not torch.cuda.is_available():
raise RuntimeError("This demo does not work on CPU.")
if num_inference_steps > self.MAX_NUM_INFERENCE_STEPS:
raise ValueError(f"Number of steps must be less than {self.MAX_NUM_INFERENCE_STEPS}")
# Resize image to avoid OOM
image = self.resize_image(image)
self.change_preprocessor(adapter_name)
self.change_adapter(adapter_name)
if apply_preprocess:
image = self.preprocessor(image)
image = resize_to_closest_aspect_ratio(image)
generator = torch.Generator(device=self.device).manual_seed(seed)
out = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_inference_steps,
adapter_conditioning_scale=adapter_conditioning_scale,
adapter_conditioning_factor=adapter_conditioning_factor,
generator=generator,
guidance_scale=guidance_scale,
).images[0]
return [image, out]
|