#!/usr/bin/env python import os import random import gradio as gr import numpy as np import torch from model import ADAPTER_NAMES, Model DESCRIPTION = "# T2I-Adapter-SDXL" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed model = Model(ADAPTER_NAMES[0]) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Row(): with gr.Column(): with gr.Group(): image = gr.Image(label="Input image", type="pil", height=600) prompt = gr.Textbox(label="Prompt") adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0]) run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True) negative_prompt = gr.Textbox( label="Negative prompt", value="anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", ) num_inference_steps = gr.Slider( label="Number of steps", minimum=1, maximum=Model.MAX_NUM_INFERENCE_STEPS, step=1, value=30, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=30.0, step=0.1, value=5.0, ) adapter_conditioning_scale = gr.Slider( label="Adapter Conditioning Scale", minimum=0.5, maximum=1, step=0.1, value=1.0, ) cond_tau = gr.Slider( label="Fraction of timesteps for which adapter should be applied", minimum=0.5, maximum=1.0, step=0.1, value=1.0, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False) inputs = [ image, prompt, negative_prompt, num_inference_steps, guidance_scale, adapter_conditioning_scale, cond_tau, seed, apply_preprocess, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=model.change_adapter, inputs=adapter_name, api_name=False, ).success( fn=model.run, inputs=inputs, outputs=result, api_name=False, ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=model.change_adapter, inputs=adapter_name, api_name=False, ).success( fn=model.run, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=model.change_adapter, inputs=adapter_name, api_name=False, ).success( fn=model.run, inputs=inputs, outputs=result, api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()