Delete appStore/info.py
Browse files- appStore/info.py +0 -65
appStore/info.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def app():
|
4 |
-
|
5 |
-
|
6 |
-
with open('style.css') as f:
|
7 |
-
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
8 |
-
|
9 |
-
st.markdown("<h2 style='text-align: center; \
|
10 |
-
color: black;'> Vulnerability Identifier</h2>",
|
11 |
-
unsafe_allow_html=True)
|
12 |
-
|
13 |
-
|
14 |
-
st.markdown("<div style='text-align: center; \
|
15 |
-
color: grey;'>The Vulnerability Identifier is an open-source\
|
16 |
-
digital tool which aims to assist policy analysts and \
|
17 |
-
other users in extracting and filtering relevant \
|
18 |
-
information on vulnerable groups from policy documents.</div>",
|
19 |
-
unsafe_allow_html=True)
|
20 |
-
footer = """
|
21 |
-
<div class="footer-custom">
|
22 |
-
Guidance & Feedback - <a href="https://www.linkedin.com/in/maren-bernlöhr-149891222" target="_blank">Robin Nowok</a> |
|
23 |
-
Developer - <a href="https://www.linkedin.com/in/lea-voigt/" target="_blank">Lea Voigt</a> |
|
24 |
-
<a href="https://www.linkedin.com/in/prashantpsingh/" target="_blank">Prashant Singh</a> |
|
25 |
-
|
26 |
-
</div>
|
27 |
-
"""
|
28 |
-
st.markdown(footer, unsafe_allow_html=True)
|
29 |
-
|
30 |
-
#c1, c2, c3 = st.columns([8,1,12])
|
31 |
-
#with c1:
|
32 |
-
# st.image("docStore/img/ndc.png")
|
33 |
-
#with c3:
|
34 |
-
st.markdown('<div style="text-align: justify;">The manual extraction \
|
35 |
-
of relevant information from text documents is a \
|
36 |
-
time-consuming task for any policy analyst. As the amount and length of \
|
37 |
-
public policy documents in relation to sustainable development (such as \
|
38 |
-
National Development Plans and Nationally Determined Contributions) \
|
39 |
-
continuously increases, a major challenge for policy action tracking – the \
|
40 |
-
evaluation of stated goals and targets and their actual implementation on \
|
41 |
-
the ground – arises. Luckily, Artificial Intelligence (AI) and Natural \
|
42 |
-
Language Processing (NLP) methods can help in shortening and easing this \
|
43 |
-
task for policy analysts.</div><br>',
|
44 |
-
unsafe_allow_html=True)
|
45 |
-
|
46 |
-
intro = """
|
47 |
-
<div style="text-align: justify;">
|
48 |
-
|
49 |
-
For this purpose, the Data Lab and the Data Service Center (DSC) \
|
50 |
-
from the Deutsche Gesellschaft für Internationale \
|
51 |
-
Zusammenarbeit (GIZ) GmbH have collaborated in the development \
|
52 |
-
of this AI-powered open-source web application that helps find and extract \
|
53 |
-
relevant information from public policy documents faster to facilitate \
|
54 |
-
evidence-based decision-making processes in sustainable development and beyond.
|
55 |
-
|
56 |
-
This tool allows policy analysts and other users the possibility to rapidly \
|
57 |
-
search for relevant information/paragraphs in the document related to different \
|
58 |
-
vulnerable groups in the climate context. \
|
59 |
-
|
60 |
-
|
61 |
-
</div>
|
62 |
-
<br>
|
63 |
-
"""
|
64 |
-
st.markdown(intro, unsafe_allow_html=True)
|
65 |
-
# st.image("docStore/img/paris.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|