Streamlit structure for work
Browse files
app.py
CHANGED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
# Load the saved model
|
7 |
+
with open('rf_model.pkl', 'rb') as file:
|
8 |
+
rf_model = pickle.load(file)
|
9 |
+
|
10 |
+
# Create the Streamlit app
|
11 |
+
st.title("Parkinson's Disease Prediction")
|
12 |
+
|
13 |
+
# Collect user input
|
14 |
+
col = ['MDVP:Fo(Hz)', 'MDVP:Fhi(Hz)', 'MDVP:Flo(Hz)', 'MDVP:Jitter(%)',
|
15 |
+
'MDVP:Jitter(Abs)', 'MDVP:RAP', 'MDVP:PPQ', 'Jitter:DDP',
|
16 |
+
'MDVP:Shimmer', 'MDVP:Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5',
|
17 |
+
'MDVP:APQ', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA',
|
18 |
+
'spread1', 'spread2', 'D2', 'PPE']
|
19 |
+
|
20 |
+
input_data = {}
|
21 |
+
for feature in col:
|
22 |
+
input_data[feature] = st.number_input(f"Enter {feature}", value=0.0)
|
23 |
+
|
24 |
+
# Make the prediction
|
25 |
+
if st.button("Predict"):
|
26 |
+
input_array = np.array(list(input_data.values())).reshape(1, -1)
|
27 |
+
prediction = rf_model.predict(input_array)
|
28 |
+
|
29 |
+
# Display the results
|
30 |
+
if prediction[0] == 1:
|
31 |
+
st.error("Parkinson's Disease detected")
|
32 |
+
else:
|
33 |
+
st.success("No Parkinson's Disease")
|