Tevfik istanbullu
commited on
Commit
•
872437c
1
Parent(s):
1f1ec4e
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
-
import os
|
4 |
-
import csv
|
5 |
-
from datetime import datetime
|
6 |
-
|
7 |
|
8 |
model = joblib.load('arabic_text_classifier.pkl')
|
9 |
vectorizer = joblib.load('tfidf_vectorizer.pkl')
|
10 |
label_encoder = joblib.load('label_encoder.pkl')
|
11 |
|
12 |
-
|
13 |
-
LOG_FILE = "predictions_log.csv"
|
14 |
-
|
15 |
-
|
16 |
-
def log_prediction(input_text, predicted_label):
|
17 |
-
|
18 |
-
file_exists = os.path.isfile(LOG_FILE)
|
19 |
-
|
20 |
-
|
21 |
-
with open(LOG_FILE, mode='a', newline='', encoding='utf-8') as file:
|
22 |
-
writer = csv.writer(file)
|
23 |
-
|
24 |
-
|
25 |
-
if not file_exists:
|
26 |
-
writer.writerow(["Timestamp", "User Input", "Predicted Category"])
|
27 |
-
|
28 |
-
|
29 |
-
writer.writerow([datetime.now().strftime("%Y-%m-%d %H:%M:%S"), input_text, predicted_label])
|
30 |
-
|
31 |
-
|
32 |
def predict_category(text):
|
33 |
text_vector = vectorizer.transform([text])
|
34 |
probabilities = model.predict_proba(text_vector)[0]
|
@@ -37,16 +13,15 @@ def predict_category(text):
|
|
37 |
|
38 |
|
39 |
if max_prob < 0.5:
|
40 |
-
|
41 |
-
else:
|
42 |
-
predicted_label = label_encoder.inverse_transform([predicted_category])[0]
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Return the predicted label
|
48 |
return predicted_label
|
49 |
|
|
|
|
|
|
|
50 |
iface = gr.Interface(
|
51 |
fn=predict_category,
|
52 |
inputs=gr.Textbox(
|
@@ -56,8 +31,10 @@ iface = gr.Interface(
|
|
56 |
),
|
57 |
outputs=gr.Label(label="Predicted Category"),
|
58 |
title="Arabic Text Classification",
|
59 |
-
description="Enter an Arabic text to get its classification based on the trained model.",
|
|
|
|
|
60 |
)
|
61 |
|
62 |
|
63 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
|
|
|
|
|
|
|
|
3 |
|
4 |
model = joblib.load('arabic_text_classifier.pkl')
|
5 |
vectorizer = joblib.load('tfidf_vectorizer.pkl')
|
6 |
label_encoder = joblib.load('label_encoder.pkl')
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def predict_category(text):
|
9 |
text_vector = vectorizer.transform([text])
|
10 |
probabilities = model.predict_proba(text_vector)[0]
|
|
|
13 |
|
14 |
|
15 |
if max_prob < 0.5:
|
16 |
+
return "Other"
|
|
|
|
|
17 |
|
18 |
+
|
19 |
+
predicted_label = label_encoder.inverse_transform([predicted_category])[0]
|
|
|
|
|
20 |
return predicted_label
|
21 |
|
22 |
+
HF_TOKEN = os.getenv("classification")
|
23 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-text-classification-data")
|
24 |
+
|
25 |
iface = gr.Interface(
|
26 |
fn=predict_category,
|
27 |
inputs=gr.Textbox(
|
|
|
31 |
),
|
32 |
outputs=gr.Label(label="Predicted Category"),
|
33 |
title="Arabic Text Classification",
|
34 |
+
description="Enter an Arabic text to get its classification based on the trained model.",
|
35 |
+
allow_flagging="auto",
|
36 |
+
flagging_callback=hf_writer,
|
37 |
)
|
38 |
|
39 |
|
40 |
+
iface.launch(share=True)
|