import gradio as gr import joblib model = joblib.load('arabic_text_classifier.pkl') vectorizer = joblib.load('tfidf_vectorizer.pkl') label_encoder = joblib.load('label_encoder.pkl') def predict_category(text): text_vector = vectorizer.transform([text]) probabilities = model.predict_proba(text_vector)[0] max_prob = max(probabilities) predicted_category = model.predict(text_vector)[0] if max_prob < 0.5: return "Other" predicted_label = label_encoder.inverse_transform([predicted_category])[0] return predicted_label HF_TOKEN = os.getenv("classification") hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-text-classification-data") iface = gr.Interface( fn=predict_category, inputs=gr.Textbox( lines=5, placeholder="Enter text in Arabic here...", label="Text" ), outputs=gr.Label(label="Predicted Category"), title="Arabic Text Classification", description="Enter an Arabic text to get its classification based on the trained model.", allow_flagging="auto", flagging_callback=hf_writer, ) iface.launch(share=True)