Spaces:
Runtime error
Runtime error
Tevfik istanbullu
commited on
Commit
β’
7b4c32c
1
Parent(s):
93a98b2
Update Image Caption Generator.py
Browse files- Image Caption Generator.py +56 -56
Image Caption Generator.py
CHANGED
@@ -1,56 +1,56 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
from PIL import Image
|
4 |
-
from transformers import AutoProcessor, BlipForConditionalGeneration
|
5 |
-
import os
|
6 |
-
# Load the pretrained processor and model
|
7 |
-
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
8 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
9 |
-
|
10 |
-
def caption_image(input_image: np.ndarray):
|
11 |
-
# Convert numpy array to PIL Image and convert to RGB
|
12 |
-
raw_image = Image.fromarray(input_image).convert('RGB')
|
13 |
-
|
14 |
-
# Process the image
|
15 |
-
inputs = processor(raw_image, return_tensors="pt")
|
16 |
-
|
17 |
-
|
18 |
-
# Generate a caption for the image
|
19 |
-
out = model.generate(**inputs,max_length=50)
|
20 |
-
|
21 |
-
# Decode the generated tokens to text
|
22 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
23 |
-
|
24 |
-
return caption
|
25 |
-
|
26 |
-
# Save the data to the Hugging Face dataset
|
27 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
28 |
-
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-images-data")
|
29 |
-
|
30 |
-
|
31 |
-
# Define examples
|
32 |
-
examples = [
|
33 |
-
["1.jpg"],
|
34 |
-
["2.jpg"],
|
35 |
-
["3.jpg"],
|
36 |
-
["4.jpg"],
|
37 |
-
]
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Create a Gradio interface
|
42 |
-
|
43 |
-
iface = gr.Interface(
|
44 |
-
fn=caption_image,
|
45 |
-
inputs=gr.Image(),
|
46 |
-
outputs=gr.Textbox(label="Generated Caption", lines=2),
|
47 |
-
title="π Image Caption Generator πΌοΈ",
|
48 |
-
description = "Generate stunning captions for your images with our AI-powered model! π\n\nπ«π Note: Please avoid entering any sensitive or personal information, as inputs may be reviewed or used for training purposes.",
|
49 |
-
allow_flagging="auto",
|
50 |
-
flagging_callback=hf_writer,
|
51 |
-
examples=examples,
|
52 |
-
|
53 |
-
)
|
54 |
-
|
55 |
-
iface.launch()
|
56 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
5 |
+
import os
|
6 |
+
# Load the pretrained processor and model
|
7 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
8 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
9 |
+
|
10 |
+
def caption_image(input_image: np.ndarray):
|
11 |
+
# Convert numpy array to PIL Image and convert to RGB
|
12 |
+
raw_image = Image.fromarray(input_image).convert('RGB')
|
13 |
+
|
14 |
+
# Process the image
|
15 |
+
inputs = processor(raw_image, return_tensors="pt")
|
16 |
+
|
17 |
+
|
18 |
+
# Generate a caption for the image
|
19 |
+
out = model.generate(**inputs,max_length=50)
|
20 |
+
|
21 |
+
# Decode the generated tokens to text
|
22 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
return caption
|
25 |
+
|
26 |
+
# Save the data to the Hugging Face dataset
|
27 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
28 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-images-data")
|
29 |
+
|
30 |
+
|
31 |
+
# Define examples
|
32 |
+
examples = [
|
33 |
+
["1.jpg"],
|
34 |
+
["2.jpg"],
|
35 |
+
["3.jpg"],
|
36 |
+
["4.jpg"],
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# Create a Gradio interface
|
42 |
+
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=caption_image,
|
45 |
+
inputs=gr.Image(),
|
46 |
+
outputs=gr.Textbox(label="Generated Caption", lines=2),
|
47 |
+
title="π Image Caption Generator πΌοΈ ",
|
48 |
+
description = "Generate stunning captions for your images with our AI-powered model! π\n\nπ«π Note: Please avoid entering any sensitive or personal information, as inputs may be reviewed or used for training purposes.",
|
49 |
+
allow_flagging="auto",
|
50 |
+
flagging_callback=hf_writer,
|
51 |
+
examples=examples,
|
52 |
+
|
53 |
+
)
|
54 |
+
|
55 |
+
iface.launch()
|
56 |
+
|