import gradio as gr import numpy as np from PIL import Image from transformers import AutoProcessor, BlipForConditionalGeneration import os # Load the pretrained processor and model processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") def caption_image(input_image: np.ndarray): # Convert numpy array to PIL Image and convert to RGB raw_image = Image.fromarray(input_image).convert('RGB') # Process the image inputs = processor(raw_image, return_tensors="pt") # Generate a caption for the image out = model.generate(**inputs,max_length=50) # Decode the generated tokens to text caption = processor.decode(out[0], skip_special_tokens=True) return caption # Save the data to the Hugging Face dataset HF_TOKEN = os.getenv("HF_TOKEN") hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-images-data") # Define examples examples = [ ["1.jpg"], ["2.jpg"], ["3.jpg"], ["4.jpg"], ] # Create a Gradio interface iface = gr.Interface( fn=caption_image, inputs=gr.Image(), outputs=gr.Textbox(label="Generated Caption", lines=2), title="šŸ” Image Caption Generator šŸ–¼ļø", description = "Generate stunning captions for your images with our AI-powered model! šŸŒŸ\n\nšŸš«šŸ“š Note: Please avoid entering any sensitive or personal information, as inputs may be reviewed or used for training purposes.", allow_flagging="auto", flagging_callback=hf_writer, examples=examples, ) iface.launch()