Spaces:
Runtime error
Runtime error
ThanaphonJoe
commited on
Commit
•
43452d4
1
Parent(s):
6200f99
test
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ from sklearn.model_selection import train_test_split
|
|
7 |
from sklearn.metrics import confusion_matrix
|
8 |
import matplotlib.pyplot as plt
|
9 |
import re
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
def deEmojify(text):
|
@@ -34,12 +37,32 @@ def deEmojify(text):
|
|
34 |
|
35 |
|
36 |
def clean_me(data):
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
data['clean2_text']= data['clean_text'].str.strip().str.lower().str.replace('\r+', ' ').str.replace('\n+',' ').str.replace('\t+',' ')
|
39 |
data['clean3_text'] = data.apply(lambda row: deEmojify(row['clean2_text']), axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
return(data)
|
41 |
|
|
|
42 |
def combine(a, b):
|
|
|
|
|
|
|
|
|
43 |
return a + " " + b
|
44 |
|
45 |
|
@@ -79,5 +102,7 @@ with gr.Blocks() as demo:
|
|
79 |
cache_examples=True,
|
80 |
)
|
81 |
|
|
|
|
|
82 |
if __name__ == "__main__":
|
83 |
demo.launch()
|
|
|
7 |
from sklearn.metrics import confusion_matrix
|
8 |
import matplotlib.pyplot as plt
|
9 |
import re
|
10 |
+
from pythainlp.util import normalize
|
11 |
+
from pythainlp.corpus import thai_stopwords
|
12 |
+
from pythainlp.tokenize import word_tokenize
|
13 |
|
14 |
|
15 |
def deEmojify(text):
|
|
|
37 |
|
38 |
|
39 |
def clean_me(data):
|
40 |
+
stopwords = list(thai_stopwords())
|
41 |
+
stopwords.append("nan")
|
42 |
+
stopwords.append("-")
|
43 |
+
stopwords.append("_")
|
44 |
+
stopwords.append("")
|
45 |
+
stopwords.append(" ")
|
46 |
+
|
47 |
+
data['clean_text'] = data['text'].str.replace(r'<[^<>]*>', '', regex=True)
|
48 |
data['clean2_text']= data['clean_text'].str.strip().str.lower().str.replace('\r+', ' ').str.replace('\n+',' ').str.replace('\t+',' ')
|
49 |
data['clean3_text'] = data.apply(lambda row: deEmojify(row['clean2_text']), axis=1)
|
50 |
+
# Normalize text
|
51 |
+
data['clean4_text'] = data.apply(lambda row: normalize(row['clean3_text']), axis=1)
|
52 |
+
# Word segmentation: it will take a while....
|
53 |
+
data['wordseged_text'] = data.apply(lambda row: word_tokenize(row['clean4_text'], engine="newmm-safe"), axis=1)
|
54 |
+
# Join the wordsegged with space
|
55 |
+
data['wordseged_space_text'] = data.apply(lambda row: " ".join(row["wordseged_text"]), axis=1)
|
56 |
+
|
57 |
+
|
58 |
return(data)
|
59 |
|
60 |
+
|
61 |
def combine(a, b):
|
62 |
+
data = pd.DataFrame()
|
63 |
+
data['text'] = [a]
|
64 |
+
data = clean_me(data)
|
65 |
+
a = data['wordseged_space_text'][0] + '123'
|
66 |
return a + " " + b
|
67 |
|
68 |
|
|
|
102 |
cache_examples=True,
|
103 |
)
|
104 |
|
105 |
+
|
106 |
+
|
107 |
if __name__ == "__main__":
|
108 |
demo.launch()
|