Spaces:
Running
Running
File size: 2,534 Bytes
51348d0 f87f969 bd0c703 f87f969 20cc32e 2bb8a76 f87f969 20cc32e bd0c703 81ec3b4 2bb8a76 f87f969 2bb8a76 f87f969 20cc32e f87f969 2bb8a76 20cc32e 2bb8a76 bd0c703 81ec3b4 57bafce f87f969 51348d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import streamlit as st
from transformers import pipeline
from ModelDriver import *
import numpy as np
# Add a title
st.title('GPT Detection Demo')
st.write("This is a demo for GPT detection. You can use this demo to test the model. There are 3 variations of the Roberta Classifier Model, The model was trained on CHEAT, GPABenchmark, OpenGPT datasets. They are all in the domain of Scientific Abstract. You can choose dataset variation of the model on the sidebar.")
# st.write("Reference on how we built Roberta Sentinel: https://arxiv.org/abs/2305.07969")
# # Add 4 options for 4 models
# ModelOption = st.sidebar.selectbox(
# 'Which Model do you want to use?',
# ('RobertaClassifier'),
# )
DatasetOption = st.sidebar.selectbox(
'Which Dataset the model was trained on?',
('OpenGPT', 'GPABenchmark', 'CHEAT'),
)
text = st.text_area('Enter text here (max 512 words)', '')
if st.button('Generate'):
# if ModelOption == 'RobertaSentinel':
# if DatasetOption == 'OpenGPT':
# result = RobertaSentinelOpenGPTInference(text)
# st.write("Model: RobertaSentinelOpenGPT")
# elif DatasetOption == 'CSAbstract':
# result = RobertaSentinelCSAbstractInference(text)
# st.write("Model: RobertaSentinelCSAbstract")
# if ModelOption == 'RobertaClassifier':
# if DatasetOption == 'OpenGPT':
# result = RobertaClassifierOpenGPTInference(text)
# st.write("Model: RobertaClassifierOpenGPT")
# elif DatasetOption == 'GPABenchmark':
# result = RobertaClassifierGPABenchmarkInference(text)
# st.write("Model: RobertaClassifierGPABenchmark")
# elif DatasetOption == 'CHEAT':
# result = RobertaClassifierCHEATInference(text)
# st.write("Model: RobertaClassifierCHEAT")
if DatasetOption == 'OpenGPT':
result = RobertaClassifierOpenGPTInference(text)
st.write("Model: RobertaClassifierOpenGPT")
elif DatasetOption == 'GPABenchmark':
result = RobertaClassifierGPABenchmarkInference(text)
st.write("Model: RobertaClassifierGPABenchmark")
elif DatasetOption == 'CHEAT':
result = RobertaClassifierCHEATInference(text)
st.write("Model: RobertaClassifierCHEAT")
Prediction = "Human Written" if not np.argmax(result) else "Machine Generated"
st.write(f"Prediction: {Prediction} ")
st.write(f"Probabilty:", max(result))
|