Spaces:
Running
Running
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import TensorDataset, DataLoader | |
device = torch.device("cpu") | |
class MLP(nn.Module): | |
def __init__(self, input_dim): | |
super(MLP, self).__init__() | |
self.fc1 = nn.Linear(input_dim, 256) | |
self.fc2 = nn.Linear(256, 2) | |
self.gelu = nn.GELU() | |
def forward(self, x): | |
x = self.gelu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
def extract_features(text): | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
model = RobertaModel.from_pretrained("roberta-base").to(device) | |
tokenized_text = tokenizer.encode(text, truncation=True, max_length=512, return_tensors="pt") | |
outputs = model(tokenized_text) | |
last_hidden_states = outputs.last_hidden_state | |
TClassification = last_hidden_states[:, 0, :].squeeze().detach().numpy() | |
return TClassification | |
def RobertaSentinelOpenGPTInference(input_text): | |
features = extract_features(input_text) | |
loaded_model = MLP(768).to(device) | |
loaded_model.load_state_dict(torch.load("SentinelCheckpoint/RobertaSentinelOpenGPT.pth", map_location=device)) | |
# Define the tokenizer and model for feature extraction | |
with torch.no_grad(): | |
inputs = torch.tensor(features).to(device) | |
outputs = loaded_model(inputs.float()) | |
_, predicted = torch.max(outputs, 0) | |
Probs = (F.softmax(outputs, dim=0).cpu().numpy()) | |
return Probs | |
def RobertaSentinelCSAbstractInference(input_text): | |
features = extract_features(input_text) | |
loaded_model = MLP(768).to(device) | |
loaded_model.load_state_dict(torch.load("SentinelCheckpoint/RobertaSentinelCSAbstract.pth", map_location=device)) | |
# Define the tokenizer and model for feature extraction | |
with torch.no_grad(): | |
inputs = torch.tensor(features).to(device) | |
outputs = loaded_model(inputs.float()) | |
_, predicted = torch.max(outputs, 0) | |
Probs = (F.softmax(outputs, dim=0).cpu().numpy()) | |
return Probs | |
def RobertaClassifierOpenGPTInference(input_text): | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
model_path = "ClassifierCheckpoint/RobertaClassifierOpenGPT512.pth" | |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model = model.to(device) | |
model.eval() | |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt') | |
input_ids = tokenized_input['input_ids'].to(device) | |
attention_mask = tokenized_input['attention_mask'].to(device) | |
# Make a prediction | |
with torch.no_grad(): | |
outputs = model(input_ids, attention_mask=attention_mask) | |
logits = outputs.logits | |
Probs = F.softmax(logits, dim=1).cpu().numpy()[0] | |
return Probs | |
def RobertaClassifierGPABenchmarkInference(input_text): | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
model_path = "ClassifierCheckpoint/RobertaClassifierGPABenchmark512.pth" | |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model = model.to(device) | |
model.eval() | |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt') | |
input_ids = tokenized_input['input_ids'].to(device) | |
attention_mask = tokenized_input['attention_mask'].to(device) | |
# Make a prediction | |
with torch.no_grad(): | |
outputs = model(input_ids, attention_mask=attention_mask) | |
logits = outputs.logits | |
Probs = F.softmax(logits, dim=1).cpu().numpy()[0] | |
return Probs | |
def RobertaClassifierCHEATInference(input_text): | |
tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
model_path = "ClassifierCheckpoint/RobertaClassifierCHEAT256.pth" | |
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model = model.to(device) | |
model.eval() | |
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=256, return_tensors='pt') | |
input_ids = tokenized_input['input_ids'].to(device) | |
attention_mask = tokenized_input['attention_mask'].to(device) | |
# Make a prediction | |
with torch.no_grad(): | |
outputs = model(input_ids, attention_mask=attention_mask) | |
logits = outputs.logits | |
Probs = F.softmax(logits, dim=1).cpu().numpy()[0] | |
return Probs | |