TharvinPrakash commited on
Commit
adce22c
·
verified ·
1 Parent(s): eef4296

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -0
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM, AutoModelForSeq2SeqLM
3
+ import torch
4
+
5
+ # Load Hugging Face tokenizer and model for re-punctuation
6
+ @st.cache_resource
7
+ def load_re_punctuate_model():
8
+ tokenizer = AutoTokenizer.from_pretrained("SJ-Ray/Re-Punctuate")
9
+ model = TFAutoModelForSeq2SeqLM.from_pretrained("SJ-Ray/Re-Punctuate")
10
+ return tokenizer, model
11
+
12
+ # Load Hugging Face tokenizer and model for headline generation (local path)
13
+ @st.cache_resource
14
+ def load_headline_model(model_path):
15
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
16
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
17
+ return tokenizer, model
18
+
19
+ # Function to re-punctuate text
20
+ def re_punctuate_text(tokenizer, model, text):
21
+ inputs = tokenizer(text, return_tensors="tf", max_length=512, truncation=True)
22
+ outputs = model.generate(inputs["input_ids"], max_length=512, num_beams=4, early_stopping=True)
23
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
24
+
25
+ # Function to generate a headline
26
+ def generate_headline_text(tokenizer, model, text, max_length=50):
27
+ inputs = tokenizer(f"headline: {text}", return_tensors="pt", truncation=True, padding=True)
28
+ with torch.no_grad():
29
+ outputs = model.generate(
30
+ **inputs,
31
+ max_length=max_length,
32
+ num_beams=5,
33
+ no_repeat_ngram_size=2,
34
+ early_stopping=True
35
+ )
36
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
37
+
38
+ # Streamlit app layout
39
+ st.title("Model Selection: Re-Punctuate or Generate Headline")
40
+
41
+ # Model selection dropdown
42
+ model_options = ["Re-Punctuate Text", "Generate Headline"]
43
+ selected_model = st.selectbox("Choose a model to use:", model_options)
44
+
45
+ # User input text
46
+ input_text = st.text_area("Enter text:", placeholder="Type your input here...")
47
+
48
+ # Default local model path for headline generation
49
+ local_model_path = r"C:\Users\Tharvin prakash\.cache\huggingface\hub\models--Michau--t5-base-en-generate-headline\snapshots\f526532f788c45b6b6288286e5ef929fa768ef6a"
50
+
51
+ # Button to process text based on the selected model
52
+ if st.button("Process Text") and input_text:
53
+ with st.spinner("Processing..."):
54
+ if selected_model == "Re-Punctuate Text":
55
+ tokenizer, model = load_re_punctuate_model()
56
+ result = re_punctuate_text(tokenizer, model, input_text)
57
+ else: # Generate Headline
58
+ tokenizer, model = load_headline_model(local_model_path)
59
+ result = generate_headline_text(tokenizer, model, input_text)
60
+
61
+ # Display result
62
+ st.subheader(f"Result from {selected_model}:")
63
+ st.write(result)
64
+
65
+ # Footer
66
+ st.write("---")
67
+ st.write("Powered by Hugging Face Models.")