File size: 9,853 Bytes
9944ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""
Taken from ESPNet, modified by Florian Lux
"""

import os
from abc import ABC

import torch


def cumsum_durations(durations):
    out = [0]
    for duration in durations:
        out.append(duration + out[-1])
    centers = list()
    for index, _ in enumerate(out):
        if index + 1 < len(out):
            centers.append((out[index] + out[index + 1]) / 2)
    return out, centers


def delete_old_checkpoints(checkpoint_dir, keep=5):
    checkpoint_list = list()
    for el in os.listdir(checkpoint_dir):
        if el.endswith(".pt") and el != "best.pt":
            checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
    if len(checkpoint_list) <= keep:
        return
    else:
        checkpoint_list.sort(reverse=False)
        checkpoints_to_delete = [os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(step)) for step in checkpoint_list[:-keep]]
        for old_checkpoint in checkpoints_to_delete:
            os.remove(os.path.join(old_checkpoint))


def get_most_recent_checkpoint(checkpoint_dir, verbose=True):
    checkpoint_list = list()
    for el in os.listdir(checkpoint_dir):
        if el.endswith(".pt") and el != "best.pt":
            checkpoint_list.append(int(el.split(".")[0].split("_")[1]))
    if len(checkpoint_list) == 0:
        print("No previous checkpoints found, cannot reload.")
        return None
    checkpoint_list.sort(reverse=True)
    if verbose:
        print("Reloading checkpoint_{}.pt".format(checkpoint_list[0]))
    return os.path.join(checkpoint_dir, "checkpoint_{}.pt".format(checkpoint_list[0]))


def make_pad_mask(lengths, xs=None, length_dim=-1, device=None):
    """
    Make mask tensor containing indices of padded part.

    Args:
        lengths (LongTensor or List): Batch of lengths (B,).
        xs (Tensor, optional): The reference tensor.
            If set, masks will be the same shape as this tensor.
        length_dim (int, optional): Dimension indicator of the above tensor.
            See the example.

    Returns:
        Tensor: Mask tensor containing indices of padded part.
                dtype=torch.uint8 in PyTorch 1.2-
                dtype=torch.bool in PyTorch 1.2+ (including 1.2)

    """
    if length_dim == 0:
        raise ValueError("length_dim cannot be 0: {}".format(length_dim))

    if not isinstance(lengths, list):
        lengths = lengths.tolist()
    bs = int(len(lengths))
    if xs is None:
        maxlen = int(max(lengths))
    else:
        maxlen = xs.size(length_dim)

    if device is not None:
        seq_range = torch.arange(0, maxlen, dtype=torch.int64, device=device)
    else:
        seq_range = torch.arange(0, maxlen, dtype=torch.int64)
    seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
    seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
    mask = seq_range_expand >= seq_length_expand

    if xs is not None:
        assert xs.size(0) == bs, (xs.size(0), bs)

        if length_dim < 0:
            length_dim = xs.dim() + length_dim
        # ind = (:, None, ..., None, :, , None, ..., None)
        ind = tuple(slice(None) if i in (0, length_dim) else None for i in range(xs.dim()))
        mask = mask[ind].expand_as(xs).to(xs.device)
    return mask


def make_non_pad_mask(lengths, xs=None, length_dim=-1, device=None):
    """
    Make mask tensor containing indices of non-padded part.

    Args:
        lengths (LongTensor or List): Batch of lengths (B,).
        xs (Tensor, optional): The reference tensor.
            If set, masks will be the same shape as this tensor.
        length_dim (int, optional): Dimension indicator of the above tensor.
            See the example.

    Returns:
        ByteTensor: mask tensor containing indices of padded part.
                    dtype=torch.uint8 in PyTorch 1.2-
                    dtype=torch.bool in PyTorch 1.2+ (including 1.2)

    """
    return ~make_pad_mask(lengths, xs, length_dim, device=device)


def initialize(model, init):
    """
    Initialize weights of a neural network module.

    Parameters are initialized using the given method or distribution.

    Args:
        model: Target.
        init: Method of initialization.
    """

    # weight init
    for p in model.parameters():
        if p.dim() > 1:
            if init == "xavier_uniform":
                torch.nn.init.xavier_uniform_(p.data)
            elif init == "xavier_normal":
                torch.nn.init.xavier_normal_(p.data)
            elif init == "kaiming_uniform":
                torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
            elif init == "kaiming_normal":
                torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
            else:
                raise ValueError("Unknown initialization: " + init)
    # bias init
    for p in model.parameters():
        if p.dim() == 1:
            p.data.zero_()

    # reset some modules with default init
    for m in model.modules():
        if isinstance(m, (torch.nn.Embedding, torch.nn.LayerNorm)):
            m.reset_parameters()


def pad_list(xs, pad_value):
    """
    Perform padding for the list of tensors.

    Args:
        xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
        pad_value (float): Value for padding.

    Returns:
        Tensor: Padded tensor (B, Tmax, `*`).

    """
    n_batch = len(xs)
    max_len = max(x.size(0) for x in xs)
    pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)

    for i in range(n_batch):
        pad[i, : xs[i].size(0)] = xs[i]

    return pad


def subsequent_mask(size, device="cpu", dtype=torch.bool):
    """
    Create mask for subsequent steps (size, size).

    :param int size: size of mask
    :param str device: "cpu" or "cuda" or torch.Tensor.device
    :param torch.dtype dtype: result dtype
    :rtype
    """
    ret = torch.ones(size, size, device=device, dtype=dtype)
    return torch.tril(ret, out=ret)


class ScorerInterface:
    """
    Scorer interface for beam search.

    The scorer performs scoring of the all tokens in vocabulary.

    Examples:
        * Search heuristics
            * :class:`espnet.nets.scorers.length_bonus.LengthBonus`
        * Decoder networks of the sequence-to-sequence models
            * :class:`espnet.nets.pytorch_backend.nets.transformer.decoder.Decoder`
            * :class:`espnet.nets.pytorch_backend.nets.rnn.decoders.Decoder`
        * Neural language models
            * :class:`espnet.nets.pytorch_backend.lm.transformer.TransformerLM`
            * :class:`espnet.nets.pytorch_backend.lm.default.DefaultRNNLM`
            * :class:`espnet.nets.pytorch_backend.lm.seq_rnn.SequentialRNNLM`

    """

    def init_state(self, x):
        """
        Get an initial state for decoding (optional).

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        return None

    def select_state(self, state, i, new_id=None):
        """
        Select state with relative ids in the main beam search.

        Args:
            state: Decoder state for prefix tokens
            i (int): Index to select a state in the main beam search
            new_id (int): New label index to select a state if necessary

        Returns:
            state: pruned state

        """
        return None if state is None else state[i]

    def score(self, y, state, x):
        """
        Score new token (required).

        Args:
            y (torch.Tensor): 1D torch.int64 prefix tokens.
            state: Scorer state for prefix tokens
            x (torch.Tensor): The encoder feature that generates ys.

        Returns:
            tuple[torch.Tensor, Any]: Tuple of
                scores for next token that has a shape of `(n_vocab)`
                and next state for ys

        """
        raise NotImplementedError

    def final_score(self, state):
        """
        Score eos (optional).

        Args:
            state: Scorer state for prefix tokens

        Returns:
            float: final score

        """
        return 0.0


class BatchScorerInterface(ScorerInterface, ABC):

    def batch_init_state(self, x):
        """
        Get an initial state for decoding (optional).

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        return self.init_state(x)

    def batch_score(self, ys, states, xs):
        """
        Score new token batch (required).

        Args:
            ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
            states (List[Any]): Scorer states for prefix tokens.
            xs (torch.Tensor):
                The encoder feature that generates ys (n_batch, xlen, n_feat).

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, n_vocab)`
                and next state list for ys.

        """
        scores = list()
        outstates = list()
        for i, (y, state, x) in enumerate(zip(ys, states, xs)):
            score, outstate = self.score(y, state, x)
            outstates.append(outstate)
            scores.append(score)
        scores = torch.cat(scores, 0).view(ys.shape[0], -1)
        return scores, outstates


def to_device(m, x):
    """Send tensor into the device of the module.
    Args:
        m (torch.nn.Module): Torch module.
        x (Tensor): Torch tensor.
    Returns:
        Tensor: Torch tensor located in the same place as torch module.
    """
    if isinstance(m, torch.nn.Module):
        device = next(m.parameters()).device
    elif isinstance(m, torch.Tensor):
        device = m.device
    else:
        raise TypeError(
            "Expected torch.nn.Module or torch.tensor, " f"bot got: {type(m)}"
            )
    return x.to(device)