Spaces:
Build error
Build error
TheComputerMan
commited on
Commit
·
d09d67d
1
Parent(s):
daa42a1
Upload PostNet.py
Browse files- PostNet.py +74 -0
PostNet.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class PostNet(torch.nn.Module):
|
9 |
+
"""
|
10 |
+
From Tacotron2
|
11 |
+
|
12 |
+
Postnet module for Spectrogram prediction network.
|
13 |
+
|
14 |
+
This is a module of Postnet in Spectrogram prediction network,
|
15 |
+
which described in `Natural TTS Synthesis by
|
16 |
+
Conditioning WaveNet on Mel Spectrogram Predictions`_.
|
17 |
+
The Postnet refines the predicted
|
18 |
+
Mel-filterbank of the decoder,
|
19 |
+
which helps to compensate the detail sturcture of spectrogram.
|
20 |
+
|
21 |
+
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
22 |
+
https://arxiv.org/abs/1712.05884
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, idim, odim, n_layers=5, n_chans=512, n_filts=5, dropout_rate=0.5, use_batch_norm=True):
|
26 |
+
"""
|
27 |
+
Initialize postnet module.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
idim (int): Dimension of the inputs.
|
31 |
+
odim (int): Dimension of the outputs.
|
32 |
+
n_layers (int, optional): The number of layers.
|
33 |
+
n_filts (int, optional): The number of filter size.
|
34 |
+
n_units (int, optional): The number of filter channels.
|
35 |
+
use_batch_norm (bool, optional): Whether to use batch normalization..
|
36 |
+
dropout_rate (float, optional): Dropout rate..
|
37 |
+
"""
|
38 |
+
super(PostNet, self).__init__()
|
39 |
+
self.postnet = torch.nn.ModuleList()
|
40 |
+
for layer in range(n_layers - 1):
|
41 |
+
ichans = odim if layer == 0 else n_chans
|
42 |
+
ochans = odim if layer == n_layers - 1 else n_chans
|
43 |
+
if use_batch_norm:
|
44 |
+
self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
|
45 |
+
torch.nn.GroupNorm(num_groups=32, num_channels=ochans), torch.nn.Tanh(),
|
46 |
+
torch.nn.Dropout(dropout_rate), )]
|
47 |
+
|
48 |
+
else:
|
49 |
+
self.postnet += [
|
50 |
+
torch.nn.Sequential(torch.nn.Conv1d(ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ), torch.nn.Tanh(),
|
51 |
+
torch.nn.Dropout(dropout_rate), )]
|
52 |
+
ichans = n_chans if n_layers != 1 else odim
|
53 |
+
if use_batch_norm:
|
54 |
+
self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
|
55 |
+
torch.nn.GroupNorm(num_groups=20, num_channels=odim),
|
56 |
+
torch.nn.Dropout(dropout_rate), )]
|
57 |
+
|
58 |
+
else:
|
59 |
+
self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
|
60 |
+
torch.nn.Dropout(dropout_rate), )]
|
61 |
+
|
62 |
+
def forward(self, xs):
|
63 |
+
"""
|
64 |
+
Calculate forward propagation.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
xs (Tensor): Batch of the sequences of padded input tensors (B, idim, Tmax).
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
Tensor: Batch of padded output tensor. (B, odim, Tmax).
|
71 |
+
"""
|
72 |
+
for i in range(len(self.postnet)):
|
73 |
+
xs = self.postnet[i](xs)
|
74 |
+
return xs
|