Spaces:
Running
Running
TheEeeeLin
commited on
Commit
·
06fbec3
1
Parent(s):
3cdc8a1
update
Browse files- .gitattributes +1 -37
- .gitignore +1 -0
- app.py +2 -2
- hivision/.gitattributes +37 -0
- hivision/creator/choose_handler.py +8 -1
- hivision/creator/face_detector.py +2 -0
- hivision/creator/human_matting.py +116 -22
- hivision/creator/weights/birefnet-v1-lite.onnx +3 -0
.gitattributes
CHANGED
@@ -1,37 +1 @@
|
|
1 |
-
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
assets/demoImage.png filter=lfs diff=lfs merge=lfs -text
|
37 |
-
hivision/creator/weights/rmbg-1.4.onnx filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
hivision/creator/weights/birefnet-v1-lite.onnx filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
CHANGED
@@ -17,5 +17,6 @@ build
|
|
17 |
test/temp/*
|
18 |
!test/temp/.gitkeep
|
19 |
!hivision/creator/weights/rmbg-1.4.onnx
|
|
|
20 |
|
21 |
.python-version
|
|
|
17 |
test/temp/*
|
18 |
!test/temp/.gitkeep
|
19 |
!hivision/creator/weights/rmbg-1.4.onnx
|
20 |
+
!hivision/creator/weights/birefnet-v1-lite.onnx
|
21 |
|
22 |
.python-version
|
app.py
CHANGED
@@ -444,7 +444,7 @@ if __name__ == "__main__":
|
|
444 |
minimum=0.1,
|
445 |
maximum=0.5,
|
446 |
value=0.2,
|
447 |
-
step=0.
|
448 |
label="面部比例",
|
449 |
interactive=True,
|
450 |
)
|
@@ -453,7 +453,7 @@ if __name__ == "__main__":
|
|
453 |
minimum=0.02,
|
454 |
maximum=0.5,
|
455 |
value=0.12,
|
456 |
-
step=0.
|
457 |
label="头距顶距离",
|
458 |
interactive=True,
|
459 |
)
|
|
|
444 |
minimum=0.1,
|
445 |
maximum=0.5,
|
446 |
value=0.2,
|
447 |
+
step=0.01,
|
448 |
label="面部比例",
|
449 |
interactive=True,
|
450 |
)
|
|
|
453 |
minimum=0.02,
|
454 |
maximum=0.5,
|
455 |
value=0.12,
|
456 |
+
step=0.01,
|
457 |
label="头距顶距离",
|
458 |
interactive=True,
|
459 |
)
|
hivision/.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/demoImage.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
hivision/creator/weights/rmbg-1.4.onnx filter=lfs diff=lfs merge=lfs -text
|
hivision/creator/choose_handler.py
CHANGED
@@ -9,10 +9,17 @@ def choose_handler(creator, matting_model_option=None, face_detect_option=None):
|
|
9 |
creator.matting_handler = extract_human_mnn_modnet
|
10 |
elif matting_model_option == "rmbg-1.4":
|
11 |
creator.matting_handler = extract_human_rmbg
|
|
|
|
|
|
|
|
|
12 |
else:
|
13 |
creator.matting_handler = extract_human
|
14 |
|
15 |
-
if
|
|
|
|
|
|
|
16 |
creator.detection_handler = detect_face_face_plusplus
|
17 |
else:
|
18 |
creator.detection_handler = detect_face_mtcnn
|
|
|
9 |
creator.matting_handler = extract_human_mnn_modnet
|
10 |
elif matting_model_option == "rmbg-1.4":
|
11 |
creator.matting_handler = extract_human_rmbg
|
12 |
+
# elif matting_model_option == "birefnet-portrait":
|
13 |
+
# creator.matting_handler = extract_human_birefnet_portrait
|
14 |
+
elif matting_model_option == "birefnet-v1-lite":
|
15 |
+
creator.matting_handler = extract_human_birefnet_lite
|
16 |
else:
|
17 |
creator.matting_handler = extract_human
|
18 |
|
19 |
+
if (
|
20 |
+
face_detect_option == "face_plusplus"
|
21 |
+
or face_detect_option == "face++ (联网API)"
|
22 |
+
):
|
23 |
creator.detection_handler = detect_face_face_plusplus
|
24 |
else:
|
25 |
creator.detection_handler = detect_face_mtcnn
|
hivision/creator/face_detector.py
CHANGED
@@ -65,6 +65,8 @@ def detect_face_face_plusplus(ctx: Context):
|
|
65 |
api_key = os.getenv("FACE_PLUS_API_KEY")
|
66 |
api_secret = os.getenv("FACE_PLUS_API_SECRET")
|
67 |
|
|
|
|
|
68 |
image = ctx.origin_image
|
69 |
# 将图片转为 base64, 且不大于2MB(Face++ API接口限制)
|
70 |
image_base64 = resize_image_to_kb_base64(image, 2000, mode="max")
|
|
|
65 |
api_key = os.getenv("FACE_PLUS_API_KEY")
|
66 |
api_secret = os.getenv("FACE_PLUS_API_SECRET")
|
67 |
|
68 |
+
print("调用了face++")
|
69 |
+
|
70 |
image = ctx.origin_image
|
71 |
# 将图片转为 base64, 且不大于2MB(Face++ API接口限制)
|
72 |
image_base64 = resize_image_to_kb_base64(image, 2000, mode="max")
|
hivision/creator/human_matting.py
CHANGED
@@ -14,6 +14,7 @@ from .tensor2numpy import NNormalize, NTo_Tensor, NUnsqueeze
|
|
14 |
from .context import Context
|
15 |
import cv2
|
16 |
import os
|
|
|
17 |
|
18 |
|
19 |
WEIGHTS = {
|
@@ -31,6 +32,9 @@ WEIGHTS = {
|
|
31 |
"mnn_hivision_modnet.mnn",
|
32 |
),
|
33 |
"rmbg-1.4": os.path.join(os.path.dirname(__file__), "weights", "rmbg-1.4.onnx"),
|
|
|
|
|
|
|
34 |
}
|
35 |
|
36 |
ONNX_DEVICE = (
|
@@ -39,26 +43,36 @@ ONNX_DEVICE = (
|
|
39 |
else "CPUExecutionProvider"
|
40 |
)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
def load_onnx_model(checkpoint_path):
|
44 |
providers = (
|
45 |
["CUDAExecutionProvider", "CPUExecutionProvider"]
|
46 |
if ONNX_DEVICE == "CUDAExecutionProvider"
|
47 |
else ["CPUExecutionProvider"]
|
48 |
)
|
49 |
|
50 |
-
|
51 |
-
sess = onnxruntime.InferenceSession(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
return sess
|
64 |
|
@@ -103,6 +117,22 @@ def extract_human_rmbg(ctx: Context):
|
|
103 |
ctx.matting_image = ctx.processing_image.copy()
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def hollow_out_fix(src: np.ndarray) -> np.ndarray:
|
107 |
"""
|
108 |
修补抠图区域,作为抠图模型精度不够的补充
|
@@ -165,22 +195,22 @@ def read_modnet_image(input_image, ref_size=512):
|
|
165 |
return im, width, length
|
166 |
|
167 |
|
168 |
-
# sess = None
|
169 |
-
|
170 |
-
|
171 |
def get_modnet_matting(input_image, checkpoint_path, ref_size=512):
|
|
|
|
|
172 |
if not os.path.exists(checkpoint_path):
|
173 |
print(f"Checkpoint file not found: {checkpoint_path}")
|
174 |
return None
|
175 |
|
176 |
-
|
|
|
177 |
|
178 |
-
input_name =
|
179 |
-
output_name =
|
180 |
|
181 |
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)
|
182 |
|
183 |
-
matte =
|
184 |
matte = (matte[0] * 255).astype("uint8")
|
185 |
matte = np.squeeze(matte)
|
186 |
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
|
@@ -192,6 +222,8 @@ def get_modnet_matting(input_image, checkpoint_path, ref_size=512):
|
|
192 |
|
193 |
|
194 |
def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024):
|
|
|
|
|
195 |
if not os.path.exists(checkpoint_path):
|
196 |
print(f"Checkpoint file not found: {checkpoint_path}")
|
197 |
return None
|
@@ -202,7 +234,8 @@ def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024):
|
|
202 |
image = image.resize(model_input_size, Image.BILINEAR)
|
203 |
return image
|
204 |
|
205 |
-
|
|
|
206 |
|
207 |
orig_image = Image.fromarray(input_image)
|
208 |
image = resize_rmbg_image(orig_image)
|
@@ -213,7 +246,7 @@ def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024):
|
|
213 |
im_np = (im_np - 0.5) / 0.5 # Normalize to [-1, 1]
|
214 |
|
215 |
# Inference
|
216 |
-
result =
|
217 |
|
218 |
# Post process
|
219 |
result = np.squeeze(result)
|
@@ -271,3 +304,64 @@ def get_mnn_modnet_matting(input_image, checkpoint_path, ref_size=512):
|
|
271 |
output_image = cv2.merge((b, g, r, mask))
|
272 |
|
273 |
return output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from .context import Context
|
15 |
import cv2
|
16 |
import os
|
17 |
+
from time import time
|
18 |
|
19 |
|
20 |
WEIGHTS = {
|
|
|
32 |
"mnn_hivision_modnet.mnn",
|
33 |
),
|
34 |
"rmbg-1.4": os.path.join(os.path.dirname(__file__), "weights", "rmbg-1.4.onnx"),
|
35 |
+
"birefnet-v1-lite": os.path.join(
|
36 |
+
os.path.dirname(__file__), "weights", "birefnet-v1-lite.onnx"
|
37 |
+
),
|
38 |
}
|
39 |
|
40 |
ONNX_DEVICE = (
|
|
|
43 |
else "CPUExecutionProvider"
|
44 |
)
|
45 |
|
46 |
+
HIVISION_MODNET_SESS = None
|
47 |
+
MODNET_PHOTOGRAPHIC_PORTRAIT_MATTING_SESS = None
|
48 |
+
RMBG_SESS = None
|
49 |
+
BIREFNET_V1_LITE_SESS = None
|
50 |
+
|
51 |
|
52 |
+
def load_onnx_model(checkpoint_path, set_cpu=False):
|
53 |
providers = (
|
54 |
["CUDAExecutionProvider", "CPUExecutionProvider"]
|
55 |
if ONNX_DEVICE == "CUDAExecutionProvider"
|
56 |
else ["CPUExecutionProvider"]
|
57 |
)
|
58 |
|
59 |
+
if set_cpu:
|
60 |
+
sess = onnxruntime.InferenceSession(
|
61 |
+
checkpoint_path, providers=["CPUExecutionProvider"]
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
try:
|
65 |
+
sess = onnxruntime.InferenceSession(checkpoint_path, providers=providers)
|
66 |
+
except Exception as e:
|
67 |
+
if ONNX_DEVICE == "CUDAExecutionProvider":
|
68 |
+
print(f"Failed to load model with CUDAExecutionProvider: {e}")
|
69 |
+
print("Falling back to CPUExecutionProvider")
|
70 |
+
# 尝试使用CPU加载模型
|
71 |
+
sess = onnxruntime.InferenceSession(
|
72 |
+
checkpoint_path, providers=["CPUExecutionProvider"]
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
raise e # 如果是CPU执行失败,重新抛出异常
|
76 |
|
77 |
return sess
|
78 |
|
|
|
117 |
ctx.matting_image = ctx.processing_image.copy()
|
118 |
|
119 |
|
120 |
+
# def extract_human_birefnet_portrait(ctx: Context):
|
121 |
+
# matting_image = get_birefnet_portrait_matting(
|
122 |
+
# ctx.processing_image, WEIGHTS["birefnet-portrait"]
|
123 |
+
# )
|
124 |
+
# ctx.processing_image = matting_image
|
125 |
+
# ctx.matting_image = ctx.processing_image.copy()
|
126 |
+
|
127 |
+
|
128 |
+
def extract_human_birefnet_lite(ctx: Context):
|
129 |
+
matting_image = get_birefnet_portrait_matting(
|
130 |
+
ctx.processing_image, WEIGHTS["birefnet-v1-lite"]
|
131 |
+
)
|
132 |
+
ctx.processing_image = matting_image
|
133 |
+
ctx.matting_image = ctx.processing_image.copy()
|
134 |
+
|
135 |
+
|
136 |
def hollow_out_fix(src: np.ndarray) -> np.ndarray:
|
137 |
"""
|
138 |
修补抠图区域,作为抠图模型精度不够的补充
|
|
|
195 |
return im, width, length
|
196 |
|
197 |
|
|
|
|
|
|
|
198 |
def get_modnet_matting(input_image, checkpoint_path, ref_size=512):
|
199 |
+
global HIVISION_MODNET_SESS
|
200 |
+
|
201 |
if not os.path.exists(checkpoint_path):
|
202 |
print(f"Checkpoint file not found: {checkpoint_path}")
|
203 |
return None
|
204 |
|
205 |
+
if HIVISION_MODNET_SESS is None:
|
206 |
+
HIVISION_MODNET_SESS = load_onnx_model(checkpoint_path, set_cpu=True)
|
207 |
|
208 |
+
input_name = HIVISION_MODNET_SESS.get_inputs()[0].name
|
209 |
+
output_name = HIVISION_MODNET_SESS.get_outputs()[0].name
|
210 |
|
211 |
im, width, length = read_modnet_image(input_image=input_image, ref_size=ref_size)
|
212 |
|
213 |
+
matte = HIVISION_MODNET_SESS.run([output_name], {input_name: im})
|
214 |
matte = (matte[0] * 255).astype("uint8")
|
215 |
matte = np.squeeze(matte)
|
216 |
mask = cv2.resize(matte, (width, length), interpolation=cv2.INTER_AREA)
|
|
|
222 |
|
223 |
|
224 |
def get_rmbg_matting(input_image: np.ndarray, checkpoint_path, ref_size=1024):
|
225 |
+
global RMBG_SESS
|
226 |
+
|
227 |
if not os.path.exists(checkpoint_path):
|
228 |
print(f"Checkpoint file not found: {checkpoint_path}")
|
229 |
return None
|
|
|
234 |
image = image.resize(model_input_size, Image.BILINEAR)
|
235 |
return image
|
236 |
|
237 |
+
if RMBG_SESS is None:
|
238 |
+
RMBG_SESS = load_onnx_model(checkpoint_path, set_cpu=True)
|
239 |
|
240 |
orig_image = Image.fromarray(input_image)
|
241 |
image = resize_rmbg_image(orig_image)
|
|
|
246 |
im_np = (im_np - 0.5) / 0.5 # Normalize to [-1, 1]
|
247 |
|
248 |
# Inference
|
249 |
+
result = RMBG_SESS.run(None, {RMBG_SESS.get_inputs()[0].name: im_np})[0]
|
250 |
|
251 |
# Post process
|
252 |
result = np.squeeze(result)
|
|
|
304 |
output_image = cv2.merge((b, g, r, mask))
|
305 |
|
306 |
return output_image
|
307 |
+
|
308 |
+
|
309 |
+
def get_birefnet_portrait_matting(input_image, checkpoint_path, ref_size=512):
|
310 |
+
global BIREFNET_V1_LITE_SESS
|
311 |
+
|
312 |
+
if not os.path.exists(checkpoint_path):
|
313 |
+
print(f"Checkpoint file not found: {checkpoint_path}")
|
314 |
+
return None
|
315 |
+
|
316 |
+
def transform_image(image):
|
317 |
+
image = image.resize((1024, 1024)) # Resize to 1024x1024
|
318 |
+
image = (
|
319 |
+
np.array(image, dtype=np.float32) / 255.0
|
320 |
+
) # Convert to numpy array and normalize to [0, 1]
|
321 |
+
image = (image - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225] # Normalize
|
322 |
+
image = np.transpose(image, (2, 0, 1)) # Change from (H, W, C) to (C, H, W)
|
323 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
324 |
+
return image.astype(np.float32) # Ensure the output is float32
|
325 |
+
|
326 |
+
orig_image = Image.fromarray(input_image)
|
327 |
+
input_images = transform_image(
|
328 |
+
orig_image
|
329 |
+
) # This will already have the correct shape
|
330 |
+
|
331 |
+
# 记录加载onnx模型的开始时间
|
332 |
+
load_start_time = time()
|
333 |
+
|
334 |
+
if BIREFNET_V1_LITE_SESS is None:
|
335 |
+
BIREFNET_V1_LITE_SESS = load_onnx_model(checkpoint_path, set_cpu=True)
|
336 |
+
|
337 |
+
# 记录加载onnx模型的结束时间
|
338 |
+
load_end_time = time()
|
339 |
+
|
340 |
+
# 打印加载onnx模型所花的时间
|
341 |
+
print(f"Loading ONNX model took {load_end_time - load_start_time:.4f} seconds")
|
342 |
+
|
343 |
+
input_name = BIREFNET_V1_LITE_SESS.get_inputs()[0].name
|
344 |
+
print(onnxruntime.get_device(), BIREFNET_V1_LITE_SESS.get_providers())
|
345 |
+
|
346 |
+
time_st = time()
|
347 |
+
pred_onnx = BIREFNET_V1_LITE_SESS.run(None, {input_name: input_images})[
|
348 |
+
-1
|
349 |
+
] # Use float32 input
|
350 |
+
pred_onnx = np.squeeze(pred_onnx) # Use numpy to squeeze
|
351 |
+
result = 1 / (1 + np.exp(-pred_onnx)) # Sigmoid function using numpy
|
352 |
+
print(f"Inference time: {time() - time_st:.4f} seconds")
|
353 |
+
|
354 |
+
# Convert to PIL image
|
355 |
+
im_array = (result * 255).astype(np.uint8)
|
356 |
+
pil_im = Image.fromarray(
|
357 |
+
im_array, mode="L"
|
358 |
+
) # Ensure mask is single channel (L mode)
|
359 |
+
|
360 |
+
# Resize the mask to match the original image size
|
361 |
+
pil_im = pil_im.resize(orig_image.size, Image.BILINEAR)
|
362 |
+
|
363 |
+
# Paste the mask on the original image
|
364 |
+
new_im = Image.new("RGBA", orig_image.size, (0, 0, 0, 0))
|
365 |
+
new_im.paste(orig_image, mask=pil_im)
|
366 |
+
|
367 |
+
return np.array(new_im)
|
hivision/creator/weights/birefnet-v1-lite.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5600024376f572a557870a5eb0afb1e5961636bef4e1e22132025467d0f03333
|
3 |
+
size 224005088
|