TheNetherWatcher's picture
Upload folder using huggingface_hub
d0ffe9c verified
import math
import pdb
import random
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput, logging
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from torch import nn
from animatediff.utils.util import zero_rank_print
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
def get_motion_module(
in_channels,
motion_module_type: str,
motion_module_kwargs: dict
):
if motion_module_type == "Vanilla":
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs)
elif motion_module_type == "Conv":
return ConvTemporalModule(in_channels=in_channels, **motion_module_kwargs)
else:
raise ValueError
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads = 8,
num_transformer_block = 2,
attention_block_types =( "Temporal_Self", ),
spatial_position_encoding = False,
temporal_position_encoding = True,
temporal_position_encoding_max_len = 32,
temporal_attention_dim_div = 1,
zero_initialize = True,
causal_temporal_attention = False,
causal_temporal_attention_mask_type = "",
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
spatial_position_encoding = spatial_position_encoding,
causal_temporal_attention=causal_temporal_attention,
causal_temporal_attention_mask_type=causal_temporal_attention_mask_type,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
def forward(self, input_tensor, temb=None, encoder_hidden_states=None, attention_mask=None):
hidden_states = input_tensor
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
output = hidden_states
return output
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
dropout = 0.0,
norm_num_groups = 32,
cross_attention_dim = 768,
activation_fn = "geglu",
attention_bias = False,
upcast_attention = False,
temporal_position_encoding = False,
temporal_position_encoding_max_len = 32,
spatial_position_encoding = False,
causal_temporal_attention = None,
causal_temporal_attention_mask_type = "",
):
super().__init__()
assert causal_temporal_attention is not None
self.causal_temporal_attention = causal_temporal_attention
assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "")
self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type
self.causal_temporal_attention_mask = None
self.spatial_position_encoding = spatial_position_encoding
inner_dim = num_attention_heads * attention_head_dim
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
if spatial_position_encoding:
self.pos_encoder_2d = PositionalEncoding2D(inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
def get_causal_temporal_attention_mask(self, hidden_states):
batch_size, sequence_length, dim = hidden_states.shape
if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != (batch_size, sequence_length, sequence_length):
zero_rank_print(f"build attn mask of type {self.causal_temporal_attention_mask_type}")
if self.causal_temporal_attention_mask_type == "causal":
# 1. vanilla causal mask
mask = torch.tril(torch.ones(sequence_length, sequence_length))
elif self.causal_temporal_attention_mask_type == "2-seq":
# 2. 2-seq
mask = torch.zeros(sequence_length, sequence_length)
mask[:sequence_length // 2, :sequence_length // 2] = 1
mask[-sequence_length // 2:, -sequence_length // 2:] = 1
elif self.causal_temporal_attention_mask_type == "0-prev":
# attn to the previous frame
indices = torch.arange(sequence_length)
indices_prev = indices - 1
indices_prev[0] = 0
mask = torch.zeros(sequence_length, sequence_length)
mask[:, 0] = 1.
mask[indices, indices_prev] = 1.
elif self.causal_temporal_attention_mask_type == "0":
# only attn to first frame
mask = torch.zeros(sequence_length, sequence_length)
mask[:,0] = 1
elif self.causal_temporal_attention_mask_type == "wo-self":
indices = torch.arange(sequence_length)
mask = torch.ones(sequence_length, sequence_length)
mask[indices, indices] = 0
elif self.causal_temporal_attention_mask_type == "circle":
indices = torch.arange(sequence_length)
indices_prev = indices - 1
indices_prev[0] = 0
mask = torch.eye(sequence_length)
mask[indices, indices_prev] = 1
mask[0,-1] = 1
else: raise ValueError
# for sanity check
if dim == 320: zero_rank_print(mask)
# generate attention mask fron binary values
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
mask = mask.unsqueeze(0)
mask = mask.repeat(batch_size, 1, 1)
self.causal_temporal_attention_mask = mask.to(hidden_states.device)
return self.causal_temporal_attention_mask
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
residual = hidden_states
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
height, width = hidden_states.shape[-2:]
hidden_states = self.norm(hidden_states)
hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c")
hidden_states = self.proj_in(hidden_states)
if self.spatial_position_encoding:
video_length = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b h w) f c -> (b f) h w c", h=height, w=width)
pos_encoding = self.pos_encoder_2d(hidden_states)
pos_encoding = rearrange(pos_encoding, "(b f) h w c -> (b h w) f c", f = video_length)
hidden_states = rearrange(hidden_states, "(b f) h w c -> (b h w) f c", f=video_length)
attention_mask = self.get_causal_temporal_attention_mask(hidden_states) if self.causal_temporal_attention else attention_mask
# Transformer Blocks
for block in self.transformer_blocks:
if not self.spatial_position_encoding :
pos_encoding = None
hidden_states = block(hidden_states, pos_encoding=pos_encoding, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask)
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width)
output = hidden_states + residual
# output = hidden_states
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types = ( "Temporal_Self", "Temporal_Self", ),
dropout = 0.0,
norm_num_groups = 32,
cross_attention_dim = 768,
activation_fn = "geglu",
attention_bias = False,
upcast_attention = False,
temporal_position_encoding = False,
temporal_position_encoding_max_len = 32,
):
super().__init__()
attention_blocks = []
norms = []
for block_name in attention_block_types:
attention_blocks.append(
TemporalSelfAttention(
attention_mode=block_name.split("_")[0],
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.ff_norm = nn.LayerNorm(dim)
def forward(self, hidden_states, pos_encoding=None, encoder_hidden_states=None, attention_mask=None):
for attention_block, norm in zip(self.attention_blocks, self.norms):
if pos_encoding is not None:
hidden_states += pos_encoding
norm_hidden_states = norm(hidden_states)
hidden_states = attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
) + hidden_states
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
def get_emb(sin_inp):
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return torch.flatten(emb, -2, -1)
class PositionalEncoding2D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding2D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 4) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.register_buffer("cached_penc", None)
def forward(self, tensor):
"""
:param tensor: A 4d tensor of size (batch_size, x, y, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, ch)
"""
if len(tensor.shape) != 4:
raise RuntimeError("The input tensor has to be 4d!")
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
return self.cached_penc
self.cached_penc = None
batch_size, x, y, orig_ch = tensor.shape
pos_x = torch.arange(x, device=tensor.device).type(self.inv_freq.type())
pos_y = torch.arange(y, device=tensor.device).type(self.inv_freq.type())
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1)
emb_y = get_emb(sin_inp_y)
emb = torch.zeros((x, y, self.channels * 2), device=tensor.device).type(
tensor.type()
)
emb[:, :, : self.channels] = emb_x
emb[:, :, self.channels : 2 * self.channels] = emb_y
self.cached_penc = emb[None, :, :, :orig_ch].repeat(tensor.shape[0], 1, 1, 1)
return self.cached_penc
class PositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout = 0.,
max_len = 32,
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
# if x.size(1) < 16:
# start_idx = random.randint(0, 12)
# else:
# start_idx = 0
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class TemporalSelfAttention(Attention):
def __init__(
self,
attention_mode = None,
temporal_position_encoding = False,
temporal_position_encoding_max_len = 32,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode == "Temporal"
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
max_len=temporal_position_encoding_max_len
) if temporal_position_encoding else None
def set_use_memory_efficient_attention_xformers(
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
):
# disable motion module efficient xformers to avoid bad results, don't know why
# TODO: fix this bug
pass
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
# add position encoding
hidden_states = self.pos_encoder(hidden_states)
if hasattr(self.processor, "__call__"):
return self.processor.__call__(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
return self.processor(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)