|
import math |
|
import pdb |
|
import random |
|
from dataclasses import dataclass |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.attention import FeedForward |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from einops import rearrange, repeat |
|
from torch import nn |
|
|
|
from animatediff.utils.util import zero_rank_print |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def zero_module(module): |
|
|
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
@dataclass |
|
class TemporalTransformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
def get_motion_module( |
|
in_channels, |
|
motion_module_type: str, |
|
motion_module_kwargs: dict |
|
): |
|
if motion_module_type == "Vanilla": |
|
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs) |
|
elif motion_module_type == "Conv": |
|
return ConvTemporalModule(in_channels=in_channels, **motion_module_kwargs) |
|
else: |
|
raise ValueError |
|
|
|
class VanillaTemporalModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads = 8, |
|
num_transformer_block = 2, |
|
attention_block_types =( "Temporal_Self", ), |
|
spatial_position_encoding = False, |
|
temporal_position_encoding = True, |
|
temporal_position_encoding_max_len = 32, |
|
temporal_attention_dim_div = 1, |
|
zero_initialize = True, |
|
|
|
causal_temporal_attention = False, |
|
causal_temporal_attention_mask_type = "", |
|
): |
|
super().__init__() |
|
|
|
self.temporal_transformer = TemporalTransformer3DModel( |
|
in_channels=in_channels, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, |
|
num_layers=num_transformer_block, |
|
attention_block_types=attention_block_types, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
spatial_position_encoding = spatial_position_encoding, |
|
causal_temporal_attention=causal_temporal_attention, |
|
causal_temporal_attention_mask_type=causal_temporal_attention_mask_type, |
|
) |
|
|
|
if zero_initialize: |
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) |
|
|
|
def forward(self, input_tensor, temb=None, encoder_hidden_states=None, attention_mask=None): |
|
|
|
hidden_states = input_tensor |
|
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) |
|
|
|
output = hidden_states |
|
|
|
return output |
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads, |
|
attention_head_dim, |
|
num_layers, |
|
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), |
|
dropout = 0.0, |
|
norm_num_groups = 32, |
|
cross_attention_dim = 768, |
|
activation_fn = "geglu", |
|
attention_bias = False, |
|
upcast_attention = False, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 32, |
|
spatial_position_encoding = False, |
|
|
|
causal_temporal_attention = None, |
|
causal_temporal_attention_mask_type = "", |
|
): |
|
super().__init__() |
|
assert causal_temporal_attention is not None |
|
self.causal_temporal_attention = causal_temporal_attention |
|
|
|
assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "") |
|
self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type |
|
self.causal_temporal_attention_mask = None |
|
self.spatial_position_encoding = spatial_position_encoding |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
if spatial_position_encoding: |
|
self.pos_encoder_2d = PositionalEncoding2D(inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
attention_block_types=attention_block_types, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def get_causal_temporal_attention_mask(self, hidden_states): |
|
batch_size, sequence_length, dim = hidden_states.shape |
|
|
|
if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != (batch_size, sequence_length, sequence_length): |
|
zero_rank_print(f"build attn mask of type {self.causal_temporal_attention_mask_type}") |
|
if self.causal_temporal_attention_mask_type == "causal": |
|
|
|
mask = torch.tril(torch.ones(sequence_length, sequence_length)) |
|
|
|
elif self.causal_temporal_attention_mask_type == "2-seq": |
|
|
|
mask = torch.zeros(sequence_length, sequence_length) |
|
mask[:sequence_length // 2, :sequence_length // 2] = 1 |
|
mask[-sequence_length // 2:, -sequence_length // 2:] = 1 |
|
|
|
elif self.causal_temporal_attention_mask_type == "0-prev": |
|
|
|
indices = torch.arange(sequence_length) |
|
indices_prev = indices - 1 |
|
indices_prev[0] = 0 |
|
mask = torch.zeros(sequence_length, sequence_length) |
|
mask[:, 0] = 1. |
|
mask[indices, indices_prev] = 1. |
|
|
|
elif self.causal_temporal_attention_mask_type == "0": |
|
|
|
mask = torch.zeros(sequence_length, sequence_length) |
|
mask[:,0] = 1 |
|
|
|
elif self.causal_temporal_attention_mask_type == "wo-self": |
|
indices = torch.arange(sequence_length) |
|
mask = torch.ones(sequence_length, sequence_length) |
|
mask[indices, indices] = 0 |
|
|
|
elif self.causal_temporal_attention_mask_type == "circle": |
|
indices = torch.arange(sequence_length) |
|
indices_prev = indices - 1 |
|
indices_prev[0] = 0 |
|
|
|
mask = torch.eye(sequence_length) |
|
mask[indices, indices_prev] = 1 |
|
mask[0,-1] = 1 |
|
|
|
else: raise ValueError |
|
|
|
|
|
if dim == 320: zero_rank_print(mask) |
|
|
|
|
|
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) |
|
mask = mask.unsqueeze(0) |
|
mask = mask.repeat(batch_size, 1, 1) |
|
|
|
self.causal_temporal_attention_mask = mask.to(hidden_states.device) |
|
|
|
return self.causal_temporal_attention_mask |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
|
|
residual = hidden_states |
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
height, width = hidden_states.shape[-2:] |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c") |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
if self.spatial_position_encoding: |
|
|
|
video_length = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b h w) f c -> (b f) h w c", h=height, w=width) |
|
pos_encoding = self.pos_encoder_2d(hidden_states) |
|
pos_encoding = rearrange(pos_encoding, "(b f) h w c -> (b h w) f c", f = video_length) |
|
hidden_states = rearrange(hidden_states, "(b f) h w c -> (b h w) f c", f=video_length) |
|
|
|
attention_mask = self.get_causal_temporal_attention_mask(hidden_states) if self.causal_temporal_attention else attention_mask |
|
|
|
|
|
for block in self.transformer_blocks: |
|
if not self.spatial_position_encoding : |
|
pos_encoding = None |
|
|
|
hidden_states = block(hidden_states, pos_encoding=pos_encoding, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask) |
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width) |
|
|
|
output = hidden_states + residual |
|
|
|
|
|
return output |
|
|
|
|
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
attention_block_types = ( "Temporal_Self", "Temporal_Self", ), |
|
dropout = 0.0, |
|
norm_num_groups = 32, |
|
cross_attention_dim = 768, |
|
activation_fn = "geglu", |
|
attention_bias = False, |
|
upcast_attention = False, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 32, |
|
): |
|
super().__init__() |
|
|
|
attention_blocks = [] |
|
norms = [] |
|
|
|
for block_name in attention_block_types: |
|
attention_blocks.append( |
|
TemporalSelfAttention( |
|
attention_mode=block_name.split("_")[0], |
|
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None, |
|
|
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
|
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
) |
|
) |
|
norms.append(nn.LayerNorm(dim)) |
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks) |
|
self.norms = nn.ModuleList(norms) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
|
|
def forward(self, hidden_states, pos_encoding=None, encoder_hidden_states=None, attention_mask=None): |
|
for attention_block, norm in zip(self.attention_blocks, self.norms): |
|
if pos_encoding is not None: |
|
hidden_states += pos_encoding |
|
norm_hidden_states = norm(hidden_states) |
|
hidden_states = attention_block( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) + hidden_states |
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
def get_emb(sin_inp): |
|
""" |
|
Gets a base embedding for one dimension with sin and cos intertwined |
|
""" |
|
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1) |
|
return torch.flatten(emb, -2, -1) |
|
|
|
class PositionalEncoding2D(nn.Module): |
|
def __init__(self, channels): |
|
""" |
|
:param channels: The last dimension of the tensor you want to apply pos emb to. |
|
""" |
|
super(PositionalEncoding2D, self).__init__() |
|
self.org_channels = channels |
|
channels = int(np.ceil(channels / 4) * 2) |
|
self.channels = channels |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.register_buffer("cached_penc", None) |
|
|
|
def forward(self, tensor): |
|
""" |
|
:param tensor: A 4d tensor of size (batch_size, x, y, ch) |
|
:return: Positional Encoding Matrix of size (batch_size, x, y, ch) |
|
""" |
|
if len(tensor.shape) != 4: |
|
raise RuntimeError("The input tensor has to be 4d!") |
|
|
|
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: |
|
return self.cached_penc |
|
|
|
self.cached_penc = None |
|
batch_size, x, y, orig_ch = tensor.shape |
|
pos_x = torch.arange(x, device=tensor.device).type(self.inv_freq.type()) |
|
pos_y = torch.arange(y, device=tensor.device).type(self.inv_freq.type()) |
|
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq) |
|
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq) |
|
emb_x = get_emb(sin_inp_x).unsqueeze(1) |
|
emb_y = get_emb(sin_inp_y) |
|
emb = torch.zeros((x, y, self.channels * 2), device=tensor.device).type( |
|
tensor.type() |
|
) |
|
emb[:, :, : self.channels] = emb_x |
|
emb[:, :, self.channels : 2 * self.channels] = emb_y |
|
|
|
self.cached_penc = emb[None, :, :, :orig_ch].repeat(tensor.shape[0], 1, 1, 1) |
|
return self.cached_penc |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
dropout = 0., |
|
max_len = 32, |
|
): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
|
|
x = x + self.pe[:, :x.size(1)] |
|
return self.dropout(x) |
|
|
|
|
|
class TemporalSelfAttention(Attention): |
|
def __init__( |
|
self, |
|
attention_mode = None, |
|
temporal_position_encoding = False, |
|
temporal_position_encoding_max_len = 32, |
|
*args, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
assert attention_mode == "Temporal" |
|
|
|
self.pos_encoder = PositionalEncoding( |
|
kwargs["query_dim"], |
|
max_len=temporal_position_encoding_max_len |
|
) if temporal_position_encoding else None |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None |
|
): |
|
|
|
|
|
pass |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.pos_encoder(hidden_states) |
|
|
|
if hasattr(self.processor, "__call__"): |
|
return self.processor.__call__( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
else: |
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|