Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -68,9 +68,9 @@ def encode_docs(docs,maxlen = 64, stride = 32):
|
|
68 |
|
69 |
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
|
70 |
|
71 |
-
np.save("
|
72 |
-
np.save("
|
73 |
-
np.save("
|
74 |
|
75 |
return embeddings, spans, file_names
|
76 |
|
@@ -81,16 +81,16 @@ def predict(query,data):
|
|
81 |
now = datetime.now()
|
82 |
current_time = now.strftime("%H:%M:%S")
|
83 |
try:
|
84 |
-
df = pd.read_csv("
|
85 |
return df
|
86 |
except Exception as e:
|
87 |
print(e)
|
88 |
print(st)
|
89 |
|
90 |
if name_to_save+".txt" in os.listdir("text_gradio"):
|
91 |
-
doc_emb = np.load('
|
92 |
-
doc_text = np.load('
|
93 |
-
file_names_dicto = np.load('
|
94 |
|
95 |
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
|
96 |
doc_text = list(doc_text.values())
|
@@ -105,7 +105,7 @@ def predict(query,data):
|
|
105 |
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
|
106 |
|
107 |
doc_emb = doc_emb.reshape(-1, 768)
|
108 |
-
with open("
|
109 |
f.write(text)
|
110 |
start = time.time()
|
111 |
query_emb = encode_query(query)
|
@@ -154,7 +154,7 @@ def predict(query,data):
|
|
154 |
f.write(" " + str(current_time))
|
155 |
f.write("\n")
|
156 |
f.close()
|
157 |
-
df.to_csv("
|
158 |
|
159 |
return df
|
160 |
|
@@ -162,7 +162,6 @@ iface = gr.Interface(
|
|
162 |
|
163 |
fn =predict,
|
164 |
inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
|
165 |
-
gr.inputs.Checkbox(default=True),
|
166 |
gr.inputs.File(),
|
167 |
],
|
168 |
outputs = [
|
|
|
68 |
|
69 |
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
|
70 |
|
71 |
+
np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings)))
|
72 |
+
np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
|
73 |
+
np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
|
74 |
|
75 |
return embeddings, spans, file_names
|
76 |
|
|
|
81 |
now = datetime.now()
|
82 |
current_time = now.strftime("%H:%M:%S")
|
83 |
try:
|
84 |
+
df = pd.read_csv("{}.csv".format(hash(st)))
|
85 |
return df
|
86 |
except Exception as e:
|
87 |
print(e)
|
88 |
print(st)
|
89 |
|
90 |
if name_to_save+".txt" in os.listdir("text_gradio"):
|
91 |
+
doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
|
92 |
+
doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
|
93 |
+
file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
|
94 |
|
95 |
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
|
96 |
doc_text = list(doc_text.values())
|
|
|
105 |
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
|
106 |
|
107 |
doc_emb = doc_emb.reshape(-1, 768)
|
108 |
+
with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
|
109 |
f.write(text)
|
110 |
start = time.time()
|
111 |
query_emb = encode_query(query)
|
|
|
154 |
f.write(" " + str(current_time))
|
155 |
f.write("\n")
|
156 |
f.close()
|
157 |
+
df.to_csv("{}.csv".format(hash(st)), index=False)
|
158 |
|
159 |
return df
|
160 |
|
|
|
162 |
|
163 |
fn =predict,
|
164 |
inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
|
|
|
165 |
gr.inputs.File(),
|
166 |
],
|
167 |
outputs = [
|