File size: 1,101 Bytes
7998dab 72bd82a 7998dab 0d64bfc 981542e 7998dab 758d5d3 7998dab 72bd82a 758d5d3 7998dab 72bd82a ea2535d 72bd82a 7998dab a92a9eb 085a76d ea2535d 085a76d 7998dab a92a9eb 7998dab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from transformers import pipeline, Conversation
import gradio as gr
import time
chatbot = pipeline("text-generation", model="epfl-llm/meditron-7b", use_auth_token=True)
# chatbot = pipeline("translation", model="facebook/mbart-large-50-many-to-many-mmt", use_auth_token=True)
message_list = []
response_list = []
print("START")
def vanilla_chatbot(message, history):
start = time.perf_counter()
print("start chat")
conversation = Conversation(text=message, past_user_inputs=message_list, generated_responses=response_list)
conversation = chatbot(conversation)
to_return = conversation.generated_responses[-1]
print ("Answer in %5.1f secs " % (time.perf_counter() - start))
return to_return
def chat_bot(message, history):
start = time.perf_counter()
print("start chat")
to_return = chatbot(message, max_length=500)[0]['generated_text']
print ("Answer in %5.1f secs " % (time.perf_counter() - start))
return to_return
demo_chatbot = gr.ChatInterface(chat_bot, title="Check medical chatbot", description="Enter question")
demo_chatbot.launch() |