import os
import re
import random
from scipy.io.wavfile import write
import gradio as gr
import spaces
roformer_models = {
'BS-Roformer-Viperx-1297.ckpt': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
'BS-Roformer-Viperx-1296.ckpt': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
'BS-Roformer-Viperx-1053.ckpt': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
'Mel-Roformer-Viperx-1143.ckpt': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt'
}
mdx23c_models = [
'MDX23C_D1581.ckpt',
'MDX23C-8KFFT-InstVoc_HQ.ckpt',
'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
]
mdxnet_models = [
'UVR-MDX-NET-Inst_full_292.onnx',
'UVR-MDX-NET_Inst_187_beta.onnx',
'UVR-MDX-NET_Inst_82_beta.onnx',
'UVR-MDX-NET_Inst_90_beta.onnx',
'UVR-MDX-NET_Main_340.onnx',
'UVR-MDX-NET_Main_390.onnx',
'UVR-MDX-NET_Main_406.onnx',
'UVR-MDX-NET_Main_427.onnx',
'UVR-MDX-NET_Main_438.onnx',
'UVR-MDX-NET-Inst_HQ_1.onnx',
'UVR-MDX-NET-Inst_HQ_2.onnx',
'UVR-MDX-NET-Inst_HQ_3.onnx',
'UVR-MDX-NET-Inst_HQ_4.onnx',
'UVR_MDXNET_Main.onnx',
'UVR-MDX-NET-Inst_Main.onnx',
'UVR_MDXNET_1_9703.onnx',
'UVR_MDXNET_2_9682.onnx',
'UVR_MDXNET_3_9662.onnx',
'UVR-MDX-NET-Inst_1.onnx',
'UVR-MDX-NET-Inst_2.onnx',
'UVR-MDX-NET-Inst_3.onnx',
'UVR_MDXNET_KARA.onnx',
'UVR_MDXNET_KARA_2.onnx',
'UVR_MDXNET_9482.onnx',
'UVR-MDX-NET-Voc_FT.onnx',
'Kim_Vocal_1.onnx',
'Kim_Vocal_2.onnx',
'Kim_Inst.onnx',
'Reverb_HQ_By_FoxJoy.onnx',
'UVR-MDX-NET_Crowd_HQ_1.onnx',
'kuielab_a_vocals.onnx',
'kuielab_a_other.onnx',
'kuielab_a_bass.onnx',
'kuielab_a_drums.onnx',
'kuielab_b_vocals.onnx',
'kuielab_b_other.onnx',
'kuielab_b_bass.onnx',
'kuielab_b_drums.onnx',
]
vrarch_models = [
'1_HP-UVR.pth',
'2_HP-UVR.pth',
'3_HP-Vocal-UVR.pth',
'4_HP-Vocal-UVR.pth',
'5_HP-Karaoke-UVR.pth',
'6_HP-Karaoke-UVR.pth',
'7_HP2-UVR.pth',
'8_HP2-UVR.pth',
'9_HP2-UVR.pth',
'10_SP-UVR-2B-32000-1.pth',
'11_SP-UVR-2B-32000-2.pth',
'12_SP-UVR-3B-44100.pth',
'13_SP-UVR-4B-44100-1.pth',
'14_SP-UVR-4B-44100-2.pth',
'15_SP-UVR-MID-44100-1.pth',
'16_SP-UVR-MID-44100-2.pth',
'17_HP-Wind_Inst-UVR.pth',
'UVR-De-Echo-Aggressive.pth',
'UVR-De-Echo-Normal.pth',
'UVR-DeEcho-DeReverb.pth',
'UVR-DeNoise-Lite.pth',
'UVR-DeNoise.pth',
'UVR-BVE-4B_SN-44100-1.pth',
'MGM_HIGHEND_v4.pth',
'MGM_LOWEND_A_v4.pth',
'MGM_LOWEND_B_v4.pth',
'MGM_MAIN_v4.pth',
]
demucs_models = [
'htdemucs_ft.yaml',
'htdemucs.yaml',
'hdemucs_mmi.yaml',
]
output_format = [
'wav',
'flac',
'mp3',
]
mdxnet_overlap_values = [
'0.25',
'0.5',
'0.75',
'0.99',
]
vrarch_window_size_values = [
'320',
'512',
'1024',
]
demucs_overlap_values = [
'0.25',
'0.50',
'0.75',
'0.99',
]
@spaces.GPU(duration=300)
def roformer_separator(roformer_audio, roformer_model, roformer_output_format, roformer_overlap):
files_list = []
files_list.clear()
directory = "./outputs"
random_id = str(random.randint(10000, 99999))
pattern = f"{random_id}"
os.makedirs("outputs", exist_ok=True)
write(f'{random_id}.wav', roformer_audio[0], roformer_audio[1])
full_roformer_model = roformer_models[roformer_model]
prompt = f"audio-separator {random_id}.wav --model_filename {full_roformer_model} --output_dir=./outputs --output_format={roformer_output_format} --normalization=0.9 --mdxc_overlap={roformer_overlap}"
os.system(prompt)
for file in os.listdir(directory):
if re.search(pattern, file):
files_list.append(os.path.join(directory, file))
stem1_file = files_list[0]
stem2_file = files_list[1]
return stem1_file, stem2_file
@spaces.GPU(duration=300)
def mdxc_separator(mdx23c_audio, mdx23c_model, mdx23c_output_format, mdx23c_segment_size, mdx23c_overlap):
files_list = []
files_list.clear()
directory = "./outputs"
random_id = str(random.randint(10000, 99999))
pattern = f"{random_id}"
os.makedirs("outputs", exist_ok=True)
write(f'{random_id}.wav', mdx23c_audio[0], mdx23c_audio[1])
prompt = f"audio-separator {random_id}.wav --model_filename {mdx23c_model} --output_dir=./outputs --output_format={mdx23c_output_format} --normalization=0.9 --mdxc_segment_size={mdx23c_segment_size} --mdxc_overlap={mdx23c_overlap}"
os.system(prompt)
for file in os.listdir(directory):
if re.search(pattern, file):
files_list.append(os.path.join(directory, file))
stem1_file = files_list[0]
stem2_file = files_list[1]
return stem1_file, stem2_file
@spaces.GPU(duration=300)
def mdxnet_separator(mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_segment_size, mdxnet_overlap, mdxnet_denoise):
files_list = []
files_list.clear()
directory = "./outputs"
random_id = str(random.randint(10000, 99999))
pattern = f"{random_id}"
os.makedirs("outputs", exist_ok=True)
write(f'{random_id}.wav', mdxnet_audio[0], mdxnet_audio[1])
prompt = f"audio-separator {random_id}.wav --model_filename {mdxnet_model} --output_dir=./outputs --output_format={mdxnet_output_format} --normalization=0.9 --mdx_segment_size={mdxnet_segment_size} --mdx_overlap={mdxnet_overlap}"
if mdxnet_denoise:
prompt += " --mdx_enable_denoise"
os.system(prompt)
for file in os.listdir(directory):
if re.search(pattern, file):
files_list.append(os.path.join(directory, file))
stem1_file = files_list[0]
stem2_file = files_list[1]
return stem1_file, stem2_file
@spaces.GPU(duration=300)
def vrarch_separator(vrarch_audio, vrarch_model, vrarch_output_format, vrarch_window_size, vrarch_agression, vrarch_tta, vrarch_high_end_process):
files_list = []
files_list.clear()
directory = "./outputs"
random_id = str(random.randint(10000, 99999))
pattern = f"{random_id}"
os.makedirs("outputs", exist_ok=True)
write(f'{random_id}.wav', vrarch_audio[0], vrarch_audio[1])
prompt = f"audio-separator {random_id}.wav --model_filename {vrarch_model} --output_dir=./outputs --output_format={vrarch_output_format} --normalization=0.9 --vr_window_size={vrarch_window_size} --vr_aggression={vrarch_agression}"
if vrarch_tta:
prompt += " --vr_enable_tta"
if vrarch_high_end_process:
prompt += " --vr_high_end_process"
os.system(prompt)
for file in os.listdir(directory):
if re.search(pattern, file):
files_list.append(os.path.join(directory, file))
stem1_file = files_list[0]
stem2_file = files_list[1]
return stem1_file, stem2_file
@spaces.GPU(duration=300)
def demucs_separator(demucs_audio, demucs_model, demucs_output_format, demucs_shifts, demucs_overlap):
files_list = []
files_list.clear()
directory = "./outputs"
random_id = str(random.randint(10000, 99999))
pattern = f"{random_id}"
os.makedirs("outputs", exist_ok=True)
write(f'{random_id}.wav', demucs_audio[0], demucs_audio[1])
prompt = f"audio-separator {random_id}.wav --model_filename {demucs_model} --output_dir=./outputs --output_format={demucs_output_format} --normalization=0.9 --demucs_shifts={demucs_shifts} --demucs_overlap={demucs_overlap}"
os.system(prompt)
for file in os.listdir(directory):
if re.search(pattern, file):
files_list.append(os.path.join(directory, file))
stem1_file = files_list[0]
stem2_file = files_list[1]
stem3_file = files_list[2]
stem4_file = files_list[3]
return stem1_file, stem2_file, stem3_file, stem4_file
with gr.Blocks(theme="NoCrypt/miku@1.2.2", title="🎵 UVR5 UI 🎵") as app:
gr.Markdown("
🎵 UVR5 UI 🎵
")
gr.Markdown("If you liked this HF Space you can give me a ❤️")
gr.Markdown("Try UVR5 UI using Colab [here](https://colab.research.google.com/github/Eddycrack864/UVR5-UI/blob/main/UVR_UI.ipynb)")
with gr.Tabs():
with gr.TabItem("BS/Mel Roformer"):
with gr.Row():
roformer_model = gr.Dropdown(
label = "Select the Model",
choices=list(roformer_models.keys()),
interactive = True
)
roformer_output_format = gr.Dropdown(
label = "Select the Output Format",
choices = output_format,
interactive = True
)
with gr.Row():
roformer_overlap = gr.Slider(
minimum = 2,
maximum = 4,
step = 1,
label = "Overlap",
info = "Amount of overlap between prediction windows.",
value = 4,
interactive = True
)
with gr.Row():
roformer_audio = gr.Audio(
label = "Input Audio",
type = "numpy",
interactive = True
)
with gr.Row():
roformer_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
roformer_stem1 = gr.Audio(
show_download_button = True,
interactive = False,
label = "Stem 1",
type = "filepath"
)
roformer_stem2 = gr.Audio(
show_download_button = True,
interactive = False,
label = "Stem 2",
type = "filepath"
)
roformer_button.click(roformer_separator, [roformer_audio, roformer_model, roformer_output_format, roformer_overlap], [roformer_stem1, roformer_stem2])
with gr.TabItem("MDX23C"):
with gr.Row():
mdx23c_model = gr.Dropdown(
label = "Select the Model",
choices = mdx23c_models,
interactive = True
)
mdx23c_output_format = gr.Dropdown(
label = "Select the Output Format",
choices = output_format,
interactive = True
)
with gr.Row():
mdx23c_segment_size = gr.Slider(
minimum = 32,
maximum = 4000,
step = 32,
label = "Segment Size",
info = "Larger consumes more resources, but may give better results.",
value = 256,
interactive = True
)
mdx23c_overlap = gr.Slider(
minimum = 2,
maximum = 50,
step = 1,
label = "Overlap",
info = "Amount of overlap between prediction windows.",
value = 8,
interactive = True
)
with gr.Row():
mdx23c_audio = gr.Audio(
label = "Input Audio",
type = "numpy",
interactive = True
)
with gr.Row():
mdx23c_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
mdx23c_stem1 = gr.Audio(
show_download_button = True,
interactive = False,
label = "Stem 1",
type = "filepath"
)
mdx23c_stem2 = gr.Audio(
show_download_button = True,
interactive = False,
label = "Stem 2",
type = "filepath"
)
mdx23c_button.click(mdxc_separator, [mdx23c_audio, mdx23c_model, mdx23c_output_format, mdx23c_segment_size, mdx23c_overlap], [mdx23c_stem1, mdx23c_stem2])
with gr.TabItem("MDX-NET"):
with gr.Row():
mdxnet_model = gr.Dropdown(
label = "Select the Model",
choices = mdxnet_models,
interactive = True
)
mdxnet_output_format = gr.Dropdown(
label = "Select the Output Format",
choices = output_format,
interactive = True
)
with gr.Row():
mdxnet_segment_size = gr.Slider(
minimum = 32,
maximum = 4000,
step = 32,
label = "Segment Size",
info = "Larger consumes more resources, but may give better results.",
value = 256,
interactive = True
)
mdxnet_overlap = gr.Dropdown(
label = "Overlap",
choices = mdxnet_overlap_values,
value = mdxnet_overlap_values[0],
interactive = True
)
mdxnet_denoise = gr.Checkbox(
label = "Denoise",
info = "Enable denoising during separation.",
value = True,
interactive = True
)
with gr.Row():
mdxnet_audio = gr.Audio(
label = "Input Audio",
type = "numpy",
interactive = True
)
with gr.Row():
mdxnet_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
mdxnet_stem1 = gr.Audio(
show_download_button = True,
interactive = False,
label = "Stem 1",
type = "filepath"
)
mdxnet_stem2 = gr.Audio(
show_download_button = True,
interactive = False,
label = "Stem 2",
type = "filepath"
)
mdxnet_button.click(mdxnet_separator, [mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_segment_size, mdxnet_overlap, mdxnet_denoise], [mdxnet_stem1, mdxnet_stem2])
with gr.TabItem("VR ARCH"):
with gr.Row():
vrarch_model = gr.Dropdown(
label = "Select the Model",
choices = vrarch_models,
interactive = True
)
vrarch_output_format = gr.Dropdown(
label = "Select the Output Format",
choices = output_format,
interactive = True
)
with gr.Row():
vrarch_window_size = gr.Dropdown(
label = "Window Size",
choices = vrarch_window_size_values,
value = vrarch_window_size_values[0],
interactive = True
)
vrarch_agression = gr.Slider(
minimum = 1,
maximum = 50,
step = 1,
label = "Agression",
info = "Intensity of primary stem extraction.",
value = 5,
interactive = True
)
vrarch_tta = gr.Checkbox(
label = "TTA",
info = "Enable Test-Time-Augmentation; slow but improves quality.",
value = True,
visible = True,
interactive = True,
)
vrarch_high_end_process = gr.Checkbox(
label = "High End Process",
info = "Mirror the missing frequency range of the output.",
value = False,
visible = True,
interactive = True,
)
with gr.Row():
vrarch_audio = gr.Audio(
label = "Input Audio",
type = "numpy",
interactive = True
)
with gr.Row():
vrarch_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
vrarch_stem1 = gr.Audio(
show_download_button = True,
interactive = False,
type = "filepath",
label = "Stem 1"
)
vrarch_stem2 = gr.Audio(
show_download_button = True,
interactive = False,
type = "filepath",
label = "Stem 2"
)
vrarch_button.click(vrarch_separator, [vrarch_audio, vrarch_model, vrarch_output_format, vrarch_window_size, vrarch_agression, vrarch_tta, vrarch_high_end_process], [vrarch_stem1, vrarch_stem2])
with gr.TabItem("Demucs"):
with gr.Row():
demucs_model = gr.Dropdown(
label = "Select the Model",
choices = demucs_models,
interactive = True
)
demucs_output_format = gr.Dropdown(
label = "Select the Output Format",
choices = output_format,
interactive = True
)
with gr.Row():
demucs_shifts = gr.Slider(
minimum = 1,
maximum = 20,
step = 1,
label = "Shifts",
info = "Number of predictions with random shifts, higher = slower but better quality.",
value = 2,
interactive = True
)
demucs_overlap = gr.Dropdown(
label = "Overlap",
choices = demucs_overlap_values,
value = demucs_overlap_values[0],
interactive = True
)
with gr.Row():
demucs_audio = gr.Audio(
label = "Input Audio",
type = "numpy",
interactive = True
)
with gr.Row():
demucs_button = gr.Button("Separate!", variant = "primary")
with gr.Row():
demucs_stem1 = gr.Audio(
show_download_button = True,
interactive = False,
type = "filepath",
label = "Stem 1"
)
demucs_stem2 = gr.Audio(
show_download_button = True,
interactive = False,
type = "filepath",
label = "Stem 2"
)
with gr.Row():
demucs_stem3 = gr.Audio(
show_download_button = True,
interactive = False,
type = "filepath",
label = "Stem 3"
)
demucs_stem4 = gr.Audio(
show_download_button = True,
interactive = False,
type = "filepath",
label = "Stem 4"
)
demucs_button.click(demucs_separator, [demucs_audio, demucs_model, demucs_output_format, demucs_shifts, demucs_overlap], [demucs_stem1, demucs_stem2, demucs_stem3, demucs_stem4])
with gr.TabItem("Credits"):
gr.Markdown(
"""
UVR5 UI created by **[Eddycrack 864](https://github.com/Eddycrack864).** Join **[AI HUB](https://discord.gg/aihub)** community.
* python-audio-separator by [beveradb](https://github.com/beveradb).
* Special thanks to [Ilaria](https://github.com/TheStingerX) for hosting this space and help.
* Thanks to [Mikus](https://github.com/cappuch) for the help with the code.
* Thanks to [Nick088](https://huggingface.co/Nick088) for the help to fix roformers.
* Improvements by [Blane187](https://github.com/Blane187).
You can donate to the original UVR5 project here:
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/uvr5)
"""
)
app.queue()
app.launch()