import os import gradio as gr import numpy as np import random import spaces # ZeroGPU integration from diffusers import DiffusionPipeline import torch # Get Hugging Face token from environment variable HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None if not HF_TOKEN: raise ValueError("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.") device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/stable-diffusion-3.5-large" # Replace with the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained( model_repo_id, torch_dtype=torch_dtype, use_auth_token=HF_TOKEN ) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU # ZeroGPU decorator def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): # Seed Handling if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Generate Image image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ /* CSS Styling (remains unchanged from earlier examples) */ """ # Higher Defaults for Advanced Settings DEFAULT_STEPS = 50 DEFAULT_GUIDANCE = 7.5 with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("") with gr.Row(): prompt = gr.Text( label="Your Creative Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt here...", container=False, ) run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button") result = gr.Image(label="Generated Image", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt if needed", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, # Higher default resolution ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, # Higher default resolution ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=15.0, step=0.1, value=DEFAULT_GUIDANCE, # Higher guidance by default ) num_inference_steps = gr.Slider( label="Number of Inference Steps", minimum=1, maximum=150, # Increased maximum steps step=1, value=DEFAULT_STEPS, # Higher inference steps for quality ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()