File size: 8,583 Bytes
78fb25d 004b372 78fb25d 004b372 78fb25d 004b372 78fb25d ecf94bd 78fb25d ecf94bd 78fb25d ecf94bd 78fb25d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import torch
import diffusers
import tqdm as notebook_tqdm
from diffusers import StableDiffusionInpaintPipeline
import cv2
import math
import gradio as gr
import numpy as np
import os
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.tasks.python.components import containers
from skimage.measure import label, regionprops
import numpy as np
import matplotlib.pyplot as plt
import cv2
from skimage.measure import label
from skimage.measure import regionprops
from PIL import Image
import torch
import numpy as np
import cv2
from PIL import Image, ImageDraw
import mediapipe as mp
from transformers import pipeline
from skimage.measure import label, regionprops
import gradio as gr
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageDraw
import mediapipe as mp
from transformers import pipeline
from skimage.measure import label, regionprops
import matplotlib.pyplot as plt
import spaces
def _normalized_to_pixel_coordinates(
normalized_x: float, normalized_y: float, image_width: int, image_height: int):
"""Converts normalized value pair to pixel coordinates."""
# Checks if the float value is between 0 and 1.
def is_valid_normalized_value(value: float) -> bool:
return (value > 0 or math.isclose(0, value)) and (value < 1 or math.isclose(1, value))
if not (is_valid_normalized_value(normalized_x) and is_valid_normalized_value(normalized_y)):
# TODO: Draw coordinates even if it's outside of the image bounds.
return None
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
return x_px, y_px
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
).to(device)
#from huggingface_hub import login
#login()
#pipe2 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
#pipe2.to("cuda")
BG_COLOR = (192, 192, 192) # gray
MASK_COLOR = (255, 255, 255) # white
RegionOfInterest = vision.InteractiveSegmenterRegionOfInterest
NormalizedKeypoint = containers.keypoint.NormalizedKeypoint
# Create the options that will be used for InteractiveSegmenter
base_options = python.BaseOptions(model_asset_path='model.tflite')
options = vision.ImageSegmenterOptions(base_options=base_options, output_category_mask=True)
def create_bounding_box_mask(image):
image = 1 - image
# Find the coordinates of the non-background pixels
y_indices, x_indices = np.nonzero(image)
if not y_indices.size or not x_indices.size:
return None # No areas found, you might return an empty mask or raise an error
# Calculate the bounding box coordinates
x_min, x_max = x_indices.min(), x_indices.max()
y_min, y_max = y_indices.min(), y_indices.max()
# Create a new mask for the bounding box
bounding_mask = np.zeros_like(image, dtype=np.uint8) # Ensure it's a single-channel mask
bounding_mask[y_min:y_max+1, x_min:x_max+1] = 1 # Fill the bounding box with white 1
return bounding_mask
@spaces.GPU
def segment_2(image_np, coordinates):
OVERLAY_COLOR = (255, 105, 180) # Rose
# Créer le segmenteur
with python.vision.InteractiveSegmenter.create_from_options(options) as segmenter:
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image_np)
# Enlever les parenthèses
coordinates = coordinates.strip("()")
# Séparer les valeurs par la virgule
valeurs = coordinates.split(',')
# Convertir les chaînes de caractères en nombres flottants
x = float(valeurs[0])
y = float(valeurs[1])
# Récupérer les masques de catégorie pour l'image
roi = RegionOfInterest(format=RegionOfInterest.Format.KEYPOINT,
keypoint=NormalizedKeypoint(x, y))
segmentation_result = segmenter.segment(image, roi)
category_mask = segmentation_result.category_mask
# Trouver la boîte englobante de la région segmentée
mask = (category_mask.numpy_view().astype(np.uint8)*255)
# Trouver la boîte englobante de la région segmentée
x, y, w, h = cv2.boundingRect(mask)
# Convertir l'image BGR en RGB
image_data = cv2.cvtColor(image.numpy_view(), cv2.COLOR_BGR2RGB)
# Créer une image d'incrustation avec la couleur désirée (par exemple, (255, 0, 0) pour le rouge)
overlay_image = np.zeros(image_data.shape, dtype=np.uint8)
overlay_image[:] = OVERLAY_COLOR
# Créer la condition à partir du tableau category_masks
alpha = np.stack((category_mask.numpy_view(),) * 3, axis=-1) <= 0.1
# Créer un canal alpha à partir de la condition avec l'opacité désirée (par exemple, 0.7 pour 70%)
alpha = alpha.astype(float) * 0.5 # Réduire l'opacité à 50%
# Fusionner l'image originale et l'image d'incrustation en fonction du canal alpha
output_image = image_data * (1 - alpha) + overlay_image * alpha
output_image = output_image.astype(np.uint8)
# Dessiner un point blanc avec une bordure noire pour indiquer le point d'intérêt
thickness, radius = 6, -1
keypoint_px = _normalized_to_pixel_coordinates(x, y, image.width, image.height)
cv2.circle(output_image, keypoint_px, thickness + 5, (0, 0, 0), radius)
cv2.circle(output_image, keypoint_px, thickness, (255, 255, 255), radius)
image_width, image_height = output_image.shape[:2]
bounding_mask = create_bounding_box_mask(mask)
bbox_mask_image = Image.fromarray((bounding_mask * 255).astype(np.uint8))
bbox_img = bbox_mask_image.convert("RGB")
bbox_img.resize((image_width, image_height))
return output_image,bbox_mask_image
@spaces.GPU
def generate_2(image_file_path, bbox_image, prompt):
# Read image
img = Image.fromarray(image_file_path).convert("RGB")
# Generate images using images and prompts
images = pipe(prompt=prompt,
image=img,
mask_image=bbox_image,
generator=torch.Generator(device="cuda").manual_seed(0),
num_images_per_prompt=3,
plms=True).images
# Create an image grid
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
grid_image = image_grid(images, 1, 3)
return grid_image
def onclick(evt: gr.SelectData, image):
if evt:
x, y = evt.index
# Normalize the coordinates by 0-1
normalized_x = round(x / image.shape[1], 2)
normalized_y = round(y / image.shape[0], 2)
return normalized_x, normalized_y
else:
return None, None
# Assurez-vous d'importer ou de définir les fonctions segment et generate_2 ici
def callback(image, coordinates, prompt):
# Convertir l'image PIL en chemin de fichier temporaire ou en numpy array si nécessaire
# Appeler la fonction segment avec les coordonnées et l'image
segmented_image, bbox_image = segment_2(image, coordinates)
# Appeler la fonction generate_2 avec l'image, bbox_image, et le prompt
grid_image = generate_2(image, bbox_image, prompt)
# Retourner les images résultantes pour l'affichage
return segmented_image, grid_image
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image", interactive=True)
coordinates_output = gr.Textbox(label="Coordinates", interactive=False)
prompt_input = gr.Textbox(label="What do you want to change?")
process_button = gr.Button("Process")
with gr.Column():
segmented_image_output = gr.Image(type="pil", label="Segmented Image")
grid_image_output = gr.Image(type="pil", label="Generated Image Grid")
image_input.select(onclick, inputs=[image_input], outputs=coordinates_output)
process_button.click(
fn=callback,
inputs=[image_input, coordinates_output, prompt_input],
outputs=[segmented_image_output, grid_image_output]
)
demo.launch(debug=True)
|