Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .gitignore +1 -0
- README.md +5 -4
- app.py +221 -0
- load_model.py +16 -0
- model.tflite +3 -0
- requirements.txt +14 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/venv/
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Furnish_AI
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import mediapipe as mp
|
5 |
+
from transformers import pipeline
|
6 |
+
from skimage.measure import label, regionprops
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import diffusers
|
10 |
+
import tqdm as notebook_tqdm
|
11 |
+
from diffusers import StableDiffusionInpaintPipeline
|
12 |
+
from diffusers import StableDiffusion3Pipeline
|
13 |
+
import cv2
|
14 |
+
import math
|
15 |
+
import gradio as gr
|
16 |
+
import numpy as np
|
17 |
+
import os
|
18 |
+
import mediapipe as mp
|
19 |
+
from mediapipe.tasks import python
|
20 |
+
from mediapipe.tasks.python import vision
|
21 |
+
from mediapipe.tasks.python.components import containers
|
22 |
+
from skimage.measure import label, regionprops
|
23 |
+
import numpy as np
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
import cv2
|
26 |
+
from skimage.measure import label
|
27 |
+
from skimage.measure import regionprops
|
28 |
+
from PIL import Image
|
29 |
+
import torch
|
30 |
+
import requests
|
31 |
+
import tensorflow as tf
|
32 |
+
|
33 |
+
|
34 |
+
def _normalized_to_pixel_coordinates(
|
35 |
+
normalized_x: float, normalized_y: float, image_width: int,
|
36 |
+
image_height: int):
|
37 |
+
"""Converts normalized value pair to pixel coordinates."""
|
38 |
+
|
39 |
+
# Checks if the float value is between 0 and 1.
|
40 |
+
def is_valid_normalized_value(value: float) -> bool:
|
41 |
+
return (value > 0 or math.isclose(0, value)) and (value < 1 or
|
42 |
+
math.isclose(1, value))
|
43 |
+
|
44 |
+
if not (is_valid_normalized_value(normalized_x) and
|
45 |
+
is_valid_normalized_value(normalized_y)):
|
46 |
+
# TODO: Draw coordinates even if it's outside of the image bounds.
|
47 |
+
return None
|
48 |
+
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
49 |
+
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
50 |
+
return x_px, y_px
|
51 |
+
|
52 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
+
|
54 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
55 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
).to(device)
|
58 |
+
|
59 |
+
|
60 |
+
BG_COLOR = (192, 192, 192) # gray
|
61 |
+
MASK_COLOR = (255, 255, 255) # white
|
62 |
+
|
63 |
+
RegionOfInterest = vision.InteractiveSegmenterRegionOfInterest
|
64 |
+
NormalizedKeypoint = containers.keypoint.NormalizedKeypoint
|
65 |
+
|
66 |
+
# Create the options that will be used for InteractiveSegmenter
|
67 |
+
base_options = python.BaseOptions(model_asset_path='model.tflite')
|
68 |
+
options = vision.ImageSegmenterOptions(base_options=base_options,
|
69 |
+
output_category_mask=True)
|
70 |
+
|
71 |
+
def get_bounding_box(mask):
|
72 |
+
"""Generate bounding box coordinates from a binary mask."""
|
73 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
74 |
+
if contours:
|
75 |
+
x, y, w, h = cv2.boundingRect(contours[0])
|
76 |
+
return x, y, x + w, y + h
|
77 |
+
return 0, 0, mask.shape[1], mask.shape[0]
|
78 |
+
|
79 |
+
|
80 |
+
def example_segmentation_function(image_file_path, x, y):
|
81 |
+
OVERLAY_COLOR = (255, 105, 180) # Rose
|
82 |
+
base_options = python.BaseOptions(model_asset_path='model.tflite')
|
83 |
+
options = vision.ImageSegmenterOptions(base_options=base_options, output_category_mask=True)
|
84 |
+
|
85 |
+
with python.vision.InteractiveSegmenter.create_from_options(options) as segmenter:
|
86 |
+
image = mp.Image.create_from_file(image_file_path)
|
87 |
+
roi = vision.InteractiveSegmenterRegionOfInterest(
|
88 |
+
format=vision.InteractiveSegmenterRegionOfInterest.Format.KEYPOINT,
|
89 |
+
keypoint=containers.keypoint.NormalizedKeypoint(x, y)
|
90 |
+
)
|
91 |
+
segmentation_result = segmenter.segment(image, roi)
|
92 |
+
category_mask = segmentation_result.category_mask
|
93 |
+
segmentation_mask = category_mask.numpy_view().astype(np.uint8)
|
94 |
+
|
95 |
+
return segmentation_mask, image
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
def segment(image_file_name, x, y, prompt):
|
100 |
+
OVERLAY_COLOR = (255, 105, 180) # Rose
|
101 |
+
|
102 |
+
# Créer le segmenteur
|
103 |
+
with python.vision.InteractiveSegmenter.create_from_options(options) as segmenter:
|
104 |
+
|
105 |
+
# Créer l'image MediaPipe
|
106 |
+
image = mp.Image.create_from_file(image_file_name)
|
107 |
+
|
108 |
+
# Récupérer les masques de catégorie pour l'image
|
109 |
+
roi = RegionOfInterest(format=RegionOfInterest.Format.KEYPOINT,
|
110 |
+
keypoint=NormalizedKeypoint(x, y))
|
111 |
+
segmentation_result = segmenter.segment(image, roi)
|
112 |
+
category_mask = segmentation_result.category_mask
|
113 |
+
# Trouver la boîte englobante de la région segmentée
|
114 |
+
mask = category_mask.numpy_view().astype(np.uint8)
|
115 |
+
|
116 |
+
|
117 |
+
# Trouver la boîte englobante de la région segmentée
|
118 |
+
x, y, w, h = cv2.boundingRect(mask)
|
119 |
+
|
120 |
+
# Convertir l'image BGR en RGB
|
121 |
+
image_data = cv2.cvtColor(image.numpy_view(), cv2.COLOR_BGR2RGB)
|
122 |
+
|
123 |
+
# Créer une image d'incrustation avec la couleur désirée (par exemple, (255, 0, 0) pour le rouge)
|
124 |
+
overlay_image = np.zeros(image_data.shape, dtype=np.uint8)
|
125 |
+
overlay_image[:] = OVERLAY_COLOR
|
126 |
+
|
127 |
+
# Créer la condition à partir du tableau category_masks
|
128 |
+
alpha = np.stack((category_mask.numpy_view(),) * 3, axis=-1) <= 0.1
|
129 |
+
|
130 |
+
# Créer un canal alpha à partir de la condition avec l'opacité désirée (par exemple, 0.7 pour 70%)
|
131 |
+
alpha = alpha.astype(float) * 0.5 # Réduire l'opacité à 50%
|
132 |
+
|
133 |
+
# Fusionner l'image originale et l'image d'incrustation en fonction du canal alpha
|
134 |
+
output_image = image_data * (1 - alpha) + overlay_image * alpha
|
135 |
+
output_image = output_image.astype(np.uint8)
|
136 |
+
|
137 |
+
# Dessiner un point blanc avec une bordure noire pour indiquer le point d'intérêt
|
138 |
+
thickness, radius = 6, -1
|
139 |
+
keypoint_px = _normalized_to_pixel_coordinates(x, y, image.width, image.height)
|
140 |
+
cv2.circle(output_image, keypoint_px, thickness + 5, (0, 0, 0), radius)
|
141 |
+
cv2.circle(output_image, keypoint_px, thickness, (255, 255, 255), radius)
|
142 |
+
|
143 |
+
# Convert the mask to binary if it's not already
|
144 |
+
binary_mask = (mask == 255).astype(np.uint8)
|
145 |
+
|
146 |
+
# Label the regions in the mask
|
147 |
+
labels = label(binary_mask)
|
148 |
+
|
149 |
+
# Obtain properties of the labeled regions
|
150 |
+
props = regionprops(labels)
|
151 |
+
|
152 |
+
# Initialize bounding box coordinates
|
153 |
+
minr, minc, maxr, maxc = 0, 0, 0, 0
|
154 |
+
|
155 |
+
for prop in props:
|
156 |
+
minr, minc, maxr, maxc = prop.bbox
|
157 |
+
|
158 |
+
# Add a 30-pixel margin
|
159 |
+
minr = max(0, minr - 300)
|
160 |
+
minc = max(0, minc - 300)
|
161 |
+
maxr = min(binary_mask.shape[0], maxr + 400)
|
162 |
+
maxc = min(binary_mask.shape[1], maxc + 400)
|
163 |
+
|
164 |
+
# Create a new black image
|
165 |
+
bbox_image = np.zeros_like(binary_mask)
|
166 |
+
|
167 |
+
# Draw the bounding box in white
|
168 |
+
bbox_image[minr:maxr, minc:maxc] = 255
|
169 |
+
|
170 |
+
print(bbox_image)
|
171 |
+
plt.imshow(bbox_image)
|
172 |
+
plt.show()
|
173 |
+
|
174 |
+
|
175 |
+
return output_image, bbox_image
|
176 |
+
|
177 |
+
|
178 |
+
def generate(image_file_path, x, y, prompt):
|
179 |
+
output_image, bbox_image = segment(image_file_path, x, y, prompt)
|
180 |
+
|
181 |
+
# Check and process images
|
182 |
+
if image_file_path is None or bbox_image is None:
|
183 |
+
return None
|
184 |
+
|
185 |
+
# Read image
|
186 |
+
img = Image.open(image_file_path).convert("RGB")
|
187 |
+
|
188 |
+
# Generate images using images and prompts
|
189 |
+
images = pipe(prompt=prompt,
|
190 |
+
image=img,
|
191 |
+
mask_image=bbox_image,
|
192 |
+
generator=torch.Generator(device="cuda").manual_seed(0),
|
193 |
+
num_images_per_prompt=3,
|
194 |
+
plms=True).images
|
195 |
+
|
196 |
+
# Create an image grid
|
197 |
+
def image_grid(imgs, rows, cols):
|
198 |
+
assert len(imgs) == rows*cols
|
199 |
+
|
200 |
+
w, h = imgs[0].size
|
201 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
202 |
+
grid_w, grid_h = grid.size
|
203 |
+
|
204 |
+
for i, img in enumerate(imgs):
|
205 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
206 |
+
return grid
|
207 |
+
|
208 |
+
grid_image = image_grid(images, 1, 3)
|
209 |
+
return output_image, grid_image
|
210 |
+
|
211 |
+
|
212 |
+
webapp = gr.Interface(fn=generate,
|
213 |
+
inputs=[
|
214 |
+
gr.Image(type="filepath", label="Upload an image"),
|
215 |
+
gr.Slider(minimum=0, maximum=1, step=0.01, label="x"),
|
216 |
+
gr.Slider(minimum=0, maximum=1, step=0.01, label="y"),
|
217 |
+
gr.Textbox(label="Prompt")],
|
218 |
+
outputs=[
|
219 |
+
gr.Image(type="pil", label="Segmented Image"),
|
220 |
+
gr.Image(type="pil", label="Generated Image Grid")])
|
221 |
+
webapp.launch(debug=True)
|
load_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import tensorflow as tf
|
3 |
+
|
4 |
+
# URL of the model file
|
5 |
+
url = "https://storage.googleapis.com/mediapipe-models/interactive_segmenter/magic_touch/float32/1/magic_touch.tflite"
|
6 |
+
|
7 |
+
# Send a HTTP request to the URL of the file, get is a method that sends a HTTP request to the server and fetches the response
|
8 |
+
response = requests.get(url)
|
9 |
+
|
10 |
+
# Write the response content to a file
|
11 |
+
with open('model.tflite', 'wb') as f:
|
12 |
+
f.write(response.content)
|
13 |
+
|
14 |
+
# Load the TFLite model
|
15 |
+
interpreter = tf.lite.Interpreter(model_path="model.tflite")
|
16 |
+
interpreter.allocate_tensors()
|
model.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e24338a717c1b7ad8d159666677ef400babb7f33b8ad60c4d96db4ecf694cd25
|
3 |
+
size 6227884
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
Pillow
|
4 |
+
mediapipe
|
5 |
+
transformers
|
6 |
+
scikit-image
|
7 |
+
gradio
|
8 |
+
torch
|
9 |
+
diffusers
|
10 |
+
tqdm
|
11 |
+
matplotlib
|
12 |
+
requests
|
13 |
+
tensorflow
|
14 |
+
accelerate
|