Spaces:
Runtime error
Runtime error
File size: 14,635 Bytes
ec50e73 792e854 24e8c3d 92f5f56 a2496cb 34d389e 24e8c3d 34d389e 92f5f56 a7cbbd8 92f5f56 488a53d ec50e73 dc6da18 bf512c7 ec50e73 bf512c7 1430cb0 ec50e73 dc6da18 ec50e73 34d389e db79ccc 1b093cd f84e07f ec50e73 4273b28 1b093cd ec50e73 a7cbbd8 1b093cd 0113778 f9f9d0b 0113778 34d389e b20c7f0 fb1e744 b20c7f0 f9f9d0b 0113778 f9f9d0b ec50e73 02dcc48 33c31cc 02dcc48 38ae6ff 02dcc48 33c31cc 02dcc48 33c31cc 02dcc48 ec50e73 2289b03 ec50e73 adf07d5 ec50e73 bf512c7 ec50e73 65a7de2 bc1a623 65a7de2 34d389e ec50e73 adf07d5 dc6da18 ec50e73 adf07d5 ec50e73 4273b28 1430cb0 ec50e73 adf07d5 34d389e 4273b28 dc6da18 adf07d5 4273b28 adf07d5 4273b28 dc6da18 34d389e dc6da18 ec50e73 adf07d5 4273b28 dc6da18 34d389e dc6da18 ec50e73 dc6da18 4273b28 dc6da18 34d389e dc6da18 38fdad8 adf07d5 4273b28 adf07d5 dc6da18 713ae7d adf07d5 34d389e adf07d5 ec50e73 adf07d5 a7cbbd8 dc6da18 4273b28 34d389e adf07d5 a7cbbd8 adf07d5 a7cbbd8 adf07d5 ec50e73 adf07d5 dc6da18 adf07d5 6c67beb adf07d5 84228e7 adf07d5 76f94cd adf07d5 76f94cd adf07d5 ec50e73 91e4b1d 2289b03 91e4b1d 742ceb6 91e4b1d ca23455 713ae7d ec50e73 adf07d5 ec50e73 6aa3f3a ec50e73 6f82f94 adf07d5 34d389e ec50e73 adf07d5 ec50e73 adf07d5 ec50e73 1bfcc16 adf07d5 ec50e73 91e4b1d 02dcc48 7ba5c3a 00da7f2 34d389e ec50e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import os
import subprocess
import datasets
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import json
from transformers.agents import Tool
from langchain_core.vectorstores import VectorStore
from transformers.agents import HfEngine, ReactJsonAgent
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
"pip install git+https://github.com/huggingface/transformers.git#egg=transformers[agents]",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# Install RAG dependencies
subprocess.run(
"pip install langchain sentence-transformers faiss-cpu",
shell=True,
)
import copy
import spaces
import time
import torch
from threading import Thread
from typing import List, Dict, Union
import urllib
from PIL import Image
import io
import datasets
import gradio as gr
from transformers import AutoProcessor, TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
DEVICE = torch.device("cuda")
MODELS = {
"idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b-chatty",
# "Ali-C137/idefics2-8b-chatty-yalla",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2",
).to(DEVICE),
}
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2-8b",
# "Ali-C137/idefics2-8b-chatty-yalla",
)
# Load the custom dataset
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
# Process the documents
source_docs = [
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]})
for doc in knowledge_base
]
docs_processed = RecursiveCharacterTextSplitter(chunk_size=500).split_documents(source_docs)[:1000]
# Create embeddings and vector store
embedding_model = HuggingFaceEmbeddings("thenlper/gte-small")
vectordb = FAISS.from_documents(documents=docs_processed, embedding=embedding_model)
class RetrieverTool(Tool):
name = "retriever"
description = "Retrieves documents from the knowledge base that have the closest embeddings to the input query."
inputs = {
"query": {
"type": "text",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
},
"source": {
"type": "text",
"description": "",
},
}
output_type = "text"
def __init__(self, vectordb: VectorStore, all_sources: str, **kwargs):
super().__init__(**kwargs)
self.vectordb = vectordb
self.inputs["source"]["description"] = (
f"The source of the documents to search, as a str representation of a list. Possible values in the list are: {all_sources}. If this argument is not provided, all sources will be searched."
)
def forward(self, query: str, source: str = None) -> str:
assert isinstance(query, str), "Your search query must be a string"
if source:
if isinstance(source, str) and "[" not in str(source): # if the source is not representing a list
source = [source]
source = json.loads(str(source).replace("'", '"'))
docs = self.vectordb.similarity_search(query, filter=({"source": source} if source else None), k=3)
if len(docs) == 0:
return "No documents found with this filtering. Try removing the source filter."
return "Retrieved documents:\n\n" + "\n===Document===\n".join(
[doc.page_content for doc in docs]
)
from transformers.agents import HfEngine, ReactJsonAgent
# Initialize the LLM engine and the agent with the retriever tool
llm_engine = HfEngine("meta-llama/Meta-Llama-3-8B-Instruct")
all_sources = list(set([doc.metadata["source"] for doc in docs_processed]))
retriever_tool = RetrieverTool(vectordb, all_sources)
agent = ReactJsonAgent(tools=[retriever_tool], llm_engine=llm_engine)
# Should change this section for the finetuned model
SYSTEM_PROMPT = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are YALLA, a personalized AI chatbot assistant designed to enhance the user's experience in Morocco. Your mission is to provide accurate, real-time, and culturally rich information to make their visit enjoyable and stress-free. You can handle text and image inputs, offering recommendations on transport, event schedules, dining, accommodations, and cultural experiences. You can also perform real-time web searches and use various APIs to assist users effectively. Always be respectful, polite, and inclusive, and strive to offer truthful and helpful responses.",
},
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Hello, I'm YALLA, your personalized AI assistant for exploring Morocco. How can I assist you today?",
},
],
}
]
examples_path = os.path.dirname(__file__)
EXAMPLES = [
[
{
"text": "For 2024, the interest expense is twice what it was in 2014, and the long-term debt is 10% higher than its 2015 level. Can you calculate the combined total of the interest and long-term debt for 2024?",
"files": [f"{examples_path}/example_images/mmmu_example_2.png"],
}
],
[
{
"text": "What's in the image?",
"files": [f"{examples_path}/example_images/plant_bulb.webp"],
}
],
[
{
"text": "Describe the image",
"files": [f"{examples_path}/example_images/baguettes_guarding_paris.png"],
}
],
[
{
"text": "Read what's written on the paper",
"files": [f"{examples_path}/example_images/paper_with_text.png"],
}
],
]
# BOT_AVATAR = "IDEFICS_logo.png"
BOT_AVATAR = "YALLA_logo.png"
# Chatbot utils
def turn_is_pure_media(turn):
return turn[1] is None
def load_image_from_url(url):
with urllib.request.urlopen(url) as response:
image_data = response.read()
image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)
return image
def img_to_bytes(image_path):
image = Image.open(image_path).convert(mode='RGB')
buffer = io.BytesIO()
image.save(buffer, format="JPEG")
img_bytes = buffer.getvalue()
image.close()
return img_bytes
def format_user_prompt_with_im_history_and_system_conditioning(
user_prompt, chat_history
) -> List[Dict[str, Union[List, str]]]:
"""
Produces the resulting list that needs to go inside the processor.
It handles the potential image(s), the history and the system conditionning.
"""
resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
resulting_images = []
for resulting_message in resulting_messages:
if resulting_message["role"] == "user":
for content in resulting_message["content"]:
if content["type"] == "image":
resulting_images.append(load_image_from_url(content["image"]))
# Format history
for turn in chat_history:
if not resulting_messages or (
resulting_messages and resulting_messages[-1]["role"] != "user"
):
resulting_messages.append(
{
"role": "user",
"content": [],
}
)
if turn_is_pure_media(turn):
media = turn[0][0]
resulting_messages[-1]["content"].append({"type": "image"})
resulting_images.append(Image.open(media))
else:
user_utterance, assistant_utterance = turn
resulting_messages[-1]["content"].append(
{"type": "text", "text": user_utterance.strip()}
)
resulting_messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": user_utterance.strip()}],
}
)
# Format current input
if not user_prompt["files"]:
resulting_messages.append(
{
"role": "user",
"content": [{"type": "text", "text": user_prompt["text"]}],
}
)
else:
# Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
resulting_messages.append(
{
"role": "user",
"content": [{"type": "image"}] * len(user_prompt["files"])
+ [{"type": "text", "text": user_prompt["text"]}],
}
)
resulting_images.extend([Image.open(path) for path in user_prompt["files"]])
return resulting_messages, resulting_images
def extract_images_from_msg_list(msg_list):
all_images = []
for msg in msg_list:
for c_ in msg["content"]:
if isinstance(c_, Image.Image):
all_images.append(c_)
return all_images
@spaces.GPU(duration=60, queue=False)
def model_inference(
user_prompt,
chat_history,
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
):
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
gr.Error("Please input a query and optionally image(s).")
if user_prompt["text"].strip() == "" and user_prompt["files"]:
gr.Error("Please input a text query along the image(s).")
streamer = TextIteratorStreamer(
PROCESSOR.tokenizer,
skip_prompt=True,
timeout=5.0,
)
# Common parameters to all decoding strategies
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"streamer": streamer,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
# Creating model inputs
resulting_text, resulting_images = format_user_prompt_with_im_history_and_system_conditioning(
user_prompt=user_prompt,
chat_history=chat_history,
)
prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
inputs = PROCESSOR(
text=prompt,
images=resulting_images if resulting_images else None,
return_tensors="pt",
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
generation_args.update(inputs)
# Use the agent to perform RAG
agent_output = agent.run(user_prompt["text"])
print("Agent output:", agent_output)
# Stream the generated text
thread = Thread(
target=MODELS[model_selector].generate,
kwargs=generation_args,
)
thread.start()
acc_text = ""
for text_token in streamer:
time.sleep(0.04)
acc_text += text_token
if acc_text.endswith("<end_of_utterance>"):
acc_text = acc_text[:-18]
yield acc_text
print("Success - generated the following text:", acc_text)
print("-----")
FEATURES = datasets.Features(
{
"model_selector": datasets.Value("string"),
"images": datasets.Sequence(datasets.Image(decode=True)),
"conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
"decoding_strategy": datasets.Value("string"),
"temperature": datasets.Value("float32"),
"max_new_tokens": datasets.Value("int32"),
"repetition_penalty": datasets.Value("float32"),
"top_p": datasets.Value("int32"),
}
)
# Hyper-parameters for generation
max_new_tokens = gr.Slider(
minimum=8,
maximum=1024,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.01,
maximum=5.0,
value=1.1,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Greedy",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.4,
step=0.1,
visible=False,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
visible=False,
interactive=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
chatbot = gr.Chatbot(
label="YALLA-Chatty",
avatar_images=[None, BOT_AVATAR],
height=450,
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("# 🇲🇦 YALLA ")
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS.keys(),
value=list(MODELS.keys())[0],
interactive=True,
show_label=False,
container=False,
label="Model",
visible=False,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection
in [
"contrastive_sampling",
"beam_sampling",
"Top P Sampling",
"sampling_top_k",
]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.ChatInterface(
fn=model_inference,
chatbot=chatbot,
examples=EXAMPLES,
multimodal=False,
cache_examples=False,
additional_inputs=[
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
],
)
demo.launch()
|