Spaces:
Runtime error
Runtime error
File size: 13,239 Bytes
e03eaf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
#!/usr/local/bin/python3
# avenir-python: Machine Learning
# Author: Pranab Ghosh
#
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# Package imports
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import random
import jprops
import statistics
from matplotlib import pyplot
from .util import *
from .mlutil import *
from .sampler import *
class MonteCarloSimulator(object):
"""
monte carlo simulator for intergation, various statistic for complex fumctions
"""
def __init__(self, numIter, callback, logFilePath, logLevName):
"""
constructor
Parameters
numIter :num of iterations
callback : call back method
logFilePath : log file path
logLevName : log level
"""
self.samplers = list()
self.numIter = numIter;
self.callback = callback
self.extraArgs = None
self.output = list()
self.sum = None
self.mean = None
self.sd = None
self.replSamplers = dict()
self.prSamples = None
self.logger = None
if logFilePath is not None:
self.logger = createLogger(__name__, logFilePath, logLevName)
self.logger.info("******** stating new session of MonteCarloSimulator")
def registerBernoulliTrialSampler(self, pr):
"""
bernoulli trial sampler
Parameters
pr : probability
"""
self.samplers.append(BernoulliTrialSampler(pr))
def registerPoissonSampler(self, rateOccur, maxSamp):
"""
poisson sampler
Parameters
rateOccur : rate of occurence
maxSamp : max limit on no of samples
"""
self.samplers.append(PoissonSampler(rateOccur, maxSamp))
def registerUniformSampler(self, minv, maxv):
"""
uniform sampler
Parameters
minv : min value
maxv : max value
"""
self.samplers.append(UniformNumericSampler(minv, maxv))
def registerTriangularSampler(self, min, max, vertexValue, vertexPos=None):
"""
triangular sampler
Parameters
xmin : min value
xmax : max value
vertexValue : distr value at vertex
vertexPos : vertex pposition
"""
self.samplers.append(TriangularRejectSampler(min, max, vertexValue, vertexPos))
def registerGaussianSampler(self, mean, sd):
"""
gaussian sampler
Parameters
mean : mean
sd : std deviation
"""
self.samplers.append(GaussianRejectSampler(mean, sd))
def registerNormalSampler(self, mean, sd):
"""
gaussian sampler using numpy
Parameters
mean : mean
sd : std deviation
"""
self.samplers.append(NormalSampler(mean, sd))
def registerLogNormalSampler(self, mean, sd):
"""
log normal sampler using numpy
Parameters
mean : mean
sd : std deviation
"""
self.samplers.append(LogNormalSampler(mean, sd))
def registerParetoSampler(self, mode, shape):
"""
pareto sampler using numpy
Parameters
mode : mode
shape : shape
"""
self.samplers.append(ParetoSampler(mode, shape))
def registerGammaSampler(self, shape, scale):
"""
gamma sampler using numpy
Parameters
shape : shape
scale : scale
"""
self.samplers.append(GammaSampler(shape, scale))
def registerDiscreteRejectSampler(self, xmin, xmax, step, *values):
"""
disccrete int sampler
Parameters
xmin : min value
xmax : max value
step : discrete step
values : distr values
"""
self.samplers.append(DiscreteRejectSampler(xmin, xmax, step, *values))
def registerNonParametricSampler(self, minv, binWidth, *values):
"""
nonparametric sampler
Parameters
xmin : min value
binWidth : bin width
values : distr values
"""
sampler = NonParamRejectSampler(minv, binWidth, *values)
sampler.sampleAsFloat()
self.samplers.append(sampler)
def registerMultiVarNormalSampler(self, numVar, *values):
"""
multi var gaussian sampler using numpy
Parameters
numVar : no of variables
values : numVar mean values followed by numVar x numVar values for covar matrix
"""
self.samplers.append(MultiVarNormalSampler(numVar, *values))
def registerJointNonParamRejectSampler(self, xmin, xbinWidth, xnbin, ymin, ybinWidth, ynbin, *values):
"""
joint nonparametric sampler
Parameters
xmin : min value for x
xbinWidth : bin width for x
xnbin : no of bins for x
ymin : min value for y
ybinWidth : bin width for y
ynbin : no of bins for y
values : distr values
"""
self.samplers.append(JointNonParamRejectSampler(xmin, xbinWidth, xnbin, ymin, ybinWidth, ynbin, *values))
def registerRangePermutationSampler(self, minv, maxv, *numShuffles):
"""
permutation sampler with range
Parameters
minv : min of range
maxv : max of range
numShuffles : no of shuffles or range of no of shuffles
"""
self.samplers.append(PermutationSampler.createSamplerWithRange(minv, maxv, *numShuffles))
def registerValuesPermutationSampler(self, values, *numShuffles):
"""
permutation sampler with values
Parameters
values : list data
numShuffles : no of shuffles or range of no of shuffles
"""
self.samplers.append(PermutationSampler.createSamplerWithValues(values, *numShuffles))
def registerNormalSamplerWithTrendCycle(self, mean, stdDev, trend, cycle, step=1):
"""
normal sampler with trend and cycle
Parameters
mean : mean
stdDev : std deviation
dmean : trend delta
cycle : cycle values wrt base mean
step : adjustment step for cycle and trend
"""
self.samplers.append(NormalSamplerWithTrendCycle(mean, stdDev, trend, cycle, step))
def registerCustomSampler(self, sampler):
"""
eventsampler
Parameters
sampler : sampler with sample() method
"""
self.samplers.append(sampler)
def registerEventSampler(self, intvSampler, valSampler=None):
"""
event sampler
Parameters
intvSampler : interval sampler
valSampler : value sampler
"""
self.samplers.append(EventSampler(intvSampler, valSampler))
def registerMetropolitanSampler(self, propStdDev, minv, binWidth, values):
"""
metropolitan sampler
Parameters
propStdDev : proposal distr std dev
minv : min domain value for target distr
binWidth : bin width
values : target distr values
"""
self.samplers.append(MetropolitanSampler(propStdDev, minv, binWidth, values))
def setSampler(self, var, iter, sampler):
"""
set sampler for some variable when iteration reaches certain point
Parameters
var : sampler index
iter : iteration count
sampler : new sampler
"""
key = (var, iter)
self.replSamplers[key] = sampler
def registerExtraArgs(self, *args):
"""
extra args
Parameters
args : extra argument list
"""
self.extraArgs = args
def replSampler(self, iter):
"""
replace samper for this iteration
Parameters
iter : iteration number
"""
if len(self.replSamplers) > 0:
for v in range(self.numVars):
key = (v, iter)
if key in self.replSamplers:
sampler = self.replSamplers[key]
self.samplers[v] = sampler
def run(self):
"""
run simulator
"""
self.sum = None
self.mean = None
self.sd = None
self.numVars = len(self.samplers)
vOut = 0
#print(formatAny(self.numIter, "num iterations"))
for i in range(self.numIter):
self.replSampler(i)
args = list()
for s in self.samplers:
arg = s.sample()
if type(arg) is list:
args.extend(arg)
else:
args.append(arg)
slen = len(args)
if self.extraArgs:
args.extend(self.extraArgs)
args.append(self)
args.append(i)
vOut = self.callback(args)
self.output.append(vOut)
self.prSamples = args[:slen]
def getOutput(self):
"""
get raw output
"""
return self.output
def setOutput(self, values):
"""
set raw output
Parameters
values : output values
"""
self.output = values
self.numIter = len(values)
def drawHist(self, myTitle, myXlabel, myYlabel):
"""
draw histogram
Parameters
myTitle : title
myXlabel : label for x
myYlabel : label for y
"""
pyplot.hist(self.output, density=True)
pyplot.title(myTitle)
pyplot.xlabel(myXlabel)
pyplot.ylabel(myYlabel)
pyplot.show()
def getSum(self):
"""
get sum
"""
if not self.sum:
self.sum = sum(self.output)
return self.sum
def getMean(self):
"""
get average
"""
if self.mean is None:
self.mean = statistics.mean(self.output)
return self.mean
def getStdDev(self):
"""
get std dev
"""
if self.sd is None:
self.sd = statistics.stdev(self.output, xbar=self.mean) if self.mean else statistics.stdev(self.output)
return self.sd
def getMedian(self):
"""
get average
"""
med = statistics.median(self.output)
return med
def getMax(self):
"""
get max
"""
return max(self.output)
def getMin(self):
"""
get min
"""
return min(self.output)
def getIntegral(self, bounds):
"""
integral
Parameters
bounds : bound on sum
"""
if not self.sum:
self.sum = sum(self.output)
return self.sum * bounds / self.numIter
def getLowerTailStat(self, zvalue, numIntPoints=50):
"""
get lower tail stat
Parameters
zvalue : zscore upper bound
numIntPoints : no of interpolation point for cum distribution
"""
mean = self.getMean()
sd = self.getStdDev()
tailStart = self.getMin()
tailEnd = mean - zvalue * sd
cvaCounts = self.cumDistr(tailStart, tailEnd, numIntPoints)
reqConf = floatRange(0.0, 0.150, .01)
msg = "p value outside interpolation range, reduce zvalue and try again {:.5f} {:.5f}".format(reqConf[-1], cvaCounts[-1][1])
assert reqConf[-1] < cvaCounts[-1][1], msg
critValues = self.interpolateCritValues(reqConf, cvaCounts, True, tailStart, tailEnd)
return critValues
def getPercentile(self, cvalue):
"""
percentile
Parameters
cvalue : value for percentile
"""
count = 0
for v in self.output:
if v < cvalue:
count += 1
percent = int(count * 100.0 / self.numIter)
return percent
def getCritValue(self, pvalue):
"""
critical value for probabaility threshold
Parameters
pvalue : pvalue
"""
assertWithinRange(pvalue, 0.0, 1.0, "invalid probabaility value")
svalues = self.output.sorted()
ppval = None
cpval = None
intv = 1.0 / (self.numIter - 1)
for i in range(self.numIter - 1):
cpval = (i + 1) / self.numIter
if cpval > pvalue:
sl = svalues[i] - svalues[i-1]
cval = svalues[i-1] + sl * (pvalue - ppval)
break
ppval = cpval
return cval
def getUpperTailStat(self, zvalue, numIntPoints=50):
"""
upper tail stat
Parameters
zvalue : zscore upper bound
numIntPoints : no of interpolation point for cum distribution
"""
mean = self.getMean()
sd = self.getStdDev()
tailStart = mean + zvalue * sd
tailEnd = self.getMax()
cvaCounts = self.cumDistr(tailStart, tailEnd, numIntPoints)
reqConf = floatRange(0.85, 1.0, .01)
msg = "p value outside interpolation range, reduce zvalue and try again {:.5f} {:.5f}".format(reqConf[0], cvaCounts[0][1])
assert reqConf[0] > cvaCounts[0][1], msg
critValues = self.interpolateCritValues(reqConf, cvaCounts, False, tailStart, tailEnd)
return critValues
def cumDistr(self, tailStart, tailEnd, numIntPoints):
"""
cumulative distribution at tail
Parameters
tailStart : tail start
tailEnd : tail end
numIntPoints : no of interpolation points
"""
delta = (tailEnd - tailStart) / numIntPoints
cvalues = floatRange(tailStart, tailEnd, delta)
cvaCounts = list()
for cv in cvalues:
count = 0
for v in self.output:
if v < cv:
count += 1
p = (cv, count/self.numIter)
if self.logger is not None:
self.logger.info("{:.3f} {:.3f}".format(p[0], p[1]))
cvaCounts.append(p)
return cvaCounts
def interpolateCritValues(self, reqConf, cvaCounts, lowertTail, tailStart, tailEnd):
"""
interpolate for spefici confidence limits
Parameters
reqConf : confidence level values
cvaCounts : cum values
lowertTail : True if lower tail
tailStart ; tail start
tailEnd : tail end
"""
critValues = list()
if self.logger is not None:
self.logger.info("target conf limit " + str(reqConf))
reqConfSub = reqConf[1:] if lowertTail else reqConf[:-1]
for rc in reqConfSub:
for i in range(len(cvaCounts) -1):
if rc >= cvaCounts[i][1] and rc < cvaCounts[i+1][1]:
#print("interpoltate between " + str(cvaCounts[i]) + " and " + str(cvaCounts[i+1]))
slope = (cvaCounts[i+1][0] - cvaCounts[i][0]) / (cvaCounts[i+1][1] - cvaCounts[i][1])
cval = cvaCounts[i][0] + slope * (rc - cvaCounts[i][1])
p = (rc, cval)
if self.logger is not None:
self.logger.debug("interpolated crit values {:.3f} {:.3f}".format(p[0], p[1]))
critValues.append(p)
break
if lowertTail:
p = (0.0, tailStart)
critValues.insert(0, p)
else:
p = (1.0, tailEnd)
critValues.append(p)
return critValues
|