saritha5 commited on
Commit
8153380
·
1 Parent(s): cbc412e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +160 -0
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import seaborn as sns
5
+
6
+ from datetime import datetime
7
+ from datetime import timedelta
8
+ from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split
9
+ from sklearn.ensemble import RandomForestRegressor
10
+ from sklearn.metrics import r2_score
11
+ from sklearn.preprocessing import LabelEncoder
12
+ from sklearn.preprocessing import StandardScaler
13
+ import streamlit as st
14
+
15
+
16
+ st.title("Next Failure Prediction")
17
+ # Loading Dataset
18
+ df1 = pd.read_csv(r'Final_Next_failure_Dataset.csv')
19
+
20
+
21
+ # replace values in the Manufacturer column with company names
22
+
23
+ replace_dict1 = {1: 'ABC Company', 2: 'DEF Company', 3: 'GHI Company', 4: 'JKL Company', 5: 'XYZ Company'}
24
+ df1['Manufacturer'] = df1['Manufacturer'].replace(replace_dict1)
25
+
26
+
27
+ # replace values in the Last_Maintenance_Type column again
28
+
29
+ replace_dict2 = {1: 'Corrective', 2: 'Preventive'}
30
+ df1['Last_Maintenance_Type'] = df1['Last_Maintenance_Type'].replace(replace_dict2)
31
+
32
+ # replace values in the Prior_Maintenance column again
33
+
34
+ replace_dict3 = {1: 'Irregular', 2: 'Regular'}
35
+ df1['Prior_Maintenance'] = df1['Prior_Maintenance'].replace(replace_dict3)
36
+
37
+ # replace values in the Repair_Type column again
38
+
39
+ replace_dict4 = {1: 'Hardware', 2: 'Software'}
40
+ df1['Repair_Type'] = df1['Repair_Type'].replace(replace_dict4)
41
+
42
+ df = df1.copy()
43
+
44
+ # For Manufacturer
45
+
46
+ le_manu = LabelEncoder()
47
+ df['Manufacturer'] = le_manu.fit_transform(df['Manufacturer'])
48
+
49
+
50
+ # For Last_Maintenance_Type
51
+
52
+ le_last = LabelEncoder()
53
+ df['Last_Maintenance_Type'] = le_last.fit_transform(df['Last_Maintenance_Type'])
54
+
55
+ # For Prior_Maintenance
56
+
57
+ le_prior = LabelEncoder()
58
+ df['Prior_Maintenance'] = le_prior.fit_transform(df['Prior_Maintenance'])
59
+
60
+ # For Repair_Type
61
+
62
+ le_repair = LabelEncoder()
63
+ df['Repair_Type'] = le_repair.fit_transform(df['Repair_Type'])
64
+
65
+ #Splitting the data train ans test data
66
+ X = df.drop('Time_to_Failure_(hours)', axis = 1)
67
+ y = df['Time_to_Failure_(hours)']
68
+
69
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state = 0)
70
+
71
+ # Train Random Forest Regression model
72
+
73
+ model = RandomForestRegressor(random_state = 0)
74
+ model.fit(X_train, y_train)
75
+
76
+
77
+ # Make predictions on train data
78
+
79
+ y_pred_train = model.predict(X_train)
80
+
81
+ # DATA from user
82
+ def user_report():
83
+ manufacturer = st.sidebar.selectbox("Manufacturer",
84
+ ("JKL Company", "GHI Company","DEF Company","ABC Company","XYZ Company" ))
85
+ if manufacturer=='JKL Company':
86
+ manufacturer=3
87
+ elif manufacturer=="GHI Company":
88
+ manufacturer=2
89
+ elif manufacturer=="DEF Company":
90
+ manufacturer=1
91
+ elif manufacturer=="ABC Company":
92
+ manufacturer =0
93
+ else:
94
+ manufacturer=4
95
+ total_operating_hours = st.sidebar.slider('Total Operating Hours)', 1000,2500, 1500 )
96
+ Usage_Intensity = st.sidebar.slider("Usage_Intensity(hous/day)",1,10,4)
97
+ Last_Maintenance_Type = st.sidebar.selectbox("Last Maintainece Type",("Corrective","Preventive"))
98
+ if Last_Maintenance_Type =='Corrective':
99
+ Last_Maintenance_Type=0
100
+ else:
101
+ Last_Maintenance_Type=1
102
+ Prior_Maintenance = st.sidebar.selectbox("Prior Maintainece",("Regular","Irregular"))
103
+ if Prior_Maintenance =='Regular':
104
+ Prior_Maintenance=1
105
+ else:
106
+ Prior_Maintenance=0
107
+
108
+ Average_Temperature= st.sidebar.slider('Average Temperature', 20,40, 35 )
109
+ humidity = st.sidebar.slider('Humidity', 52,70, 55 )
110
+ Vibration_Level = st.sidebar.slider('Vibration Level', 2,4, 2 )
111
+ Pressure = st.sidebar.slider('Pressure', 28,32, 30 )
112
+ Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',105,120,115)
113
+ Repair_Type = st.sidebar.selectbox("Repair Type",("Hardware","Software"))
114
+ if Repair_Type =='Software':
115
+ Repair_Type=1
116
+ else:
117
+ Repair_Type=0
118
+ load_factor = st.sidebar.number_input('Enter the Load Factor (any number between 0 to 1 )',min_value=0.0,max_value=1.0,step=0.1)
119
+ engine_speed=st.sidebar.slider('Engine Speed',7000,8000,7800)
120
+ Oil_Temperature=st.sidebar.slider('Oil Temperature',170,185,172)
121
+
122
+
123
+ user_report_data = {
124
+ 'Manufacturer': manufacturer,
125
+ 'Total_Operating_Hours': total_operating_hours,
126
+ 'Usage_Intensity_(hours/day)': Usage_Intensity ,
127
+ 'Last_Maintenance_Type': Last_Maintenance_Type,
128
+ "Prior_Maintenance":Prior_Maintenance,
129
+ 'Average_Temperature':Average_Temperature,
130
+ 'Humidity': humidity,
131
+ 'Vibration_Level': Vibration_Level,
132
+ 'Pressure': Pressure,
133
+ 'Power_Input_Voltage': Power_Input_Voltage,
134
+ 'Repair_Type': Repair_Type ,
135
+ 'Load_Factor': load_factor,
136
+ 'Engine_Speed': engine_speed,
137
+ 'Oil_Temperature':Oil_Temperature
138
+ }
139
+ report_data = pd.DataFrame(user_report_data, index=[0])
140
+
141
+ return report_data
142
+
143
+ #Customer Data
144
+ user_data = user_report()
145
+ st.subheader("Component Details")
146
+ st.write(user_data)
147
+
148
+
149
+ # define the prediction function
150
+ def prediction(user_data):
151
+
152
+ predicted_max_number_of_repairs = model.predict(user_data)
153
+
154
+ # return the predicted max number of repairs as output
155
+ return np.round(predicted_max_number_of_repairs[0])
156
+ # Function calling
157
+ y_pred = prediction(user_data)
158
+ st.write("Click here to see the Predictions")
159
+ if st.button("Predict"):
160
+ st.subheader(f"Next Failure is {y_pred} hours ")