Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
|
6 |
+
from datetime import datetime
|
7 |
+
from datetime import timedelta
|
8 |
+
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split
|
9 |
+
from sklearn.ensemble import RandomForestRegressor
|
10 |
+
from sklearn.metrics import r2_score
|
11 |
+
from sklearn.preprocessing import LabelEncoder
|
12 |
+
from sklearn.preprocessing import StandardScaler
|
13 |
+
import streamlit as st
|
14 |
+
|
15 |
+
|
16 |
+
st.title("Next Failure Prediction")
|
17 |
+
# Loading Dataset
|
18 |
+
df1 = pd.read_csv(r'Final_Next_failure_Dataset.csv')
|
19 |
+
|
20 |
+
|
21 |
+
# replace values in the Manufacturer column with company names
|
22 |
+
|
23 |
+
replace_dict1 = {1: 'ABC Company', 2: 'DEF Company', 3: 'GHI Company', 4: 'JKL Company', 5: 'XYZ Company'}
|
24 |
+
df1['Manufacturer'] = df1['Manufacturer'].replace(replace_dict1)
|
25 |
+
|
26 |
+
|
27 |
+
# replace values in the Last_Maintenance_Type column again
|
28 |
+
|
29 |
+
replace_dict2 = {1: 'Corrective', 2: 'Preventive'}
|
30 |
+
df1['Last_Maintenance_Type'] = df1['Last_Maintenance_Type'].replace(replace_dict2)
|
31 |
+
|
32 |
+
# replace values in the Prior_Maintenance column again
|
33 |
+
|
34 |
+
replace_dict3 = {1: 'Irregular', 2: 'Regular'}
|
35 |
+
df1['Prior_Maintenance'] = df1['Prior_Maintenance'].replace(replace_dict3)
|
36 |
+
|
37 |
+
# replace values in the Repair_Type column again
|
38 |
+
|
39 |
+
replace_dict4 = {1: 'Hardware', 2: 'Software'}
|
40 |
+
df1['Repair_Type'] = df1['Repair_Type'].replace(replace_dict4)
|
41 |
+
|
42 |
+
df = df1.copy()
|
43 |
+
|
44 |
+
# For Manufacturer
|
45 |
+
|
46 |
+
le_manu = LabelEncoder()
|
47 |
+
df['Manufacturer'] = le_manu.fit_transform(df['Manufacturer'])
|
48 |
+
|
49 |
+
|
50 |
+
# For Last_Maintenance_Type
|
51 |
+
|
52 |
+
le_last = LabelEncoder()
|
53 |
+
df['Last_Maintenance_Type'] = le_last.fit_transform(df['Last_Maintenance_Type'])
|
54 |
+
|
55 |
+
# For Prior_Maintenance
|
56 |
+
|
57 |
+
le_prior = LabelEncoder()
|
58 |
+
df['Prior_Maintenance'] = le_prior.fit_transform(df['Prior_Maintenance'])
|
59 |
+
|
60 |
+
# For Repair_Type
|
61 |
+
|
62 |
+
le_repair = LabelEncoder()
|
63 |
+
df['Repair_Type'] = le_repair.fit_transform(df['Repair_Type'])
|
64 |
+
|
65 |
+
#Splitting the data train ans test data
|
66 |
+
X = df.drop('Time_to_Failure_(hours)', axis = 1)
|
67 |
+
y = df['Time_to_Failure_(hours)']
|
68 |
+
|
69 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state = 0)
|
70 |
+
|
71 |
+
# Train Random Forest Regression model
|
72 |
+
|
73 |
+
model = RandomForestRegressor(random_state = 0)
|
74 |
+
model.fit(X_train, y_train)
|
75 |
+
|
76 |
+
|
77 |
+
# Make predictions on train data
|
78 |
+
|
79 |
+
y_pred_train = model.predict(X_train)
|
80 |
+
|
81 |
+
# DATA from user
|
82 |
+
def user_report():
|
83 |
+
manufacturer = st.sidebar.selectbox("Manufacturer",
|
84 |
+
("JKL Company", "GHI Company","DEF Company","ABC Company","XYZ Company" ))
|
85 |
+
if manufacturer=='JKL Company':
|
86 |
+
manufacturer=3
|
87 |
+
elif manufacturer=="GHI Company":
|
88 |
+
manufacturer=2
|
89 |
+
elif manufacturer=="DEF Company":
|
90 |
+
manufacturer=1
|
91 |
+
elif manufacturer=="ABC Company":
|
92 |
+
manufacturer =0
|
93 |
+
else:
|
94 |
+
manufacturer=4
|
95 |
+
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 1000,2500, 1500 )
|
96 |
+
Usage_Intensity = st.sidebar.slider("Usage_Intensity(hous/day)",1,10,4)
|
97 |
+
Last_Maintenance_Type = st.sidebar.selectbox("Last Maintainece Type",("Corrective","Preventive"))
|
98 |
+
if Last_Maintenance_Type =='Corrective':
|
99 |
+
Last_Maintenance_Type=0
|
100 |
+
else:
|
101 |
+
Last_Maintenance_Type=1
|
102 |
+
Prior_Maintenance = st.sidebar.selectbox("Prior Maintainece",("Regular","Irregular"))
|
103 |
+
if Prior_Maintenance =='Regular':
|
104 |
+
Prior_Maintenance=1
|
105 |
+
else:
|
106 |
+
Prior_Maintenance=0
|
107 |
+
|
108 |
+
Average_Temperature= st.sidebar.slider('Average Temperature', 20,40, 35 )
|
109 |
+
humidity = st.sidebar.slider('Humidity', 52,70, 55 )
|
110 |
+
Vibration_Level = st.sidebar.slider('Vibration Level', 2,4, 2 )
|
111 |
+
Pressure = st.sidebar.slider('Pressure', 28,32, 30 )
|
112 |
+
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',105,120,115)
|
113 |
+
Repair_Type = st.sidebar.selectbox("Repair Type",("Hardware","Software"))
|
114 |
+
if Repair_Type =='Software':
|
115 |
+
Repair_Type=1
|
116 |
+
else:
|
117 |
+
Repair_Type=0
|
118 |
+
load_factor = st.sidebar.number_input('Enter the Load Factor (any number between 0 to 1 )',min_value=0.0,max_value=1.0,step=0.1)
|
119 |
+
engine_speed=st.sidebar.slider('Engine Speed',7000,8000,7800)
|
120 |
+
Oil_Temperature=st.sidebar.slider('Oil Temperature',170,185,172)
|
121 |
+
|
122 |
+
|
123 |
+
user_report_data = {
|
124 |
+
'Manufacturer': manufacturer,
|
125 |
+
'Total_Operating_Hours': total_operating_hours,
|
126 |
+
'Usage_Intensity_(hours/day)': Usage_Intensity ,
|
127 |
+
'Last_Maintenance_Type': Last_Maintenance_Type,
|
128 |
+
"Prior_Maintenance":Prior_Maintenance,
|
129 |
+
'Average_Temperature':Average_Temperature,
|
130 |
+
'Humidity': humidity,
|
131 |
+
'Vibration_Level': Vibration_Level,
|
132 |
+
'Pressure': Pressure,
|
133 |
+
'Power_Input_Voltage': Power_Input_Voltage,
|
134 |
+
'Repair_Type': Repair_Type ,
|
135 |
+
'Load_Factor': load_factor,
|
136 |
+
'Engine_Speed': engine_speed,
|
137 |
+
'Oil_Temperature':Oil_Temperature
|
138 |
+
}
|
139 |
+
report_data = pd.DataFrame(user_report_data, index=[0])
|
140 |
+
|
141 |
+
return report_data
|
142 |
+
|
143 |
+
#Customer Data
|
144 |
+
user_data = user_report()
|
145 |
+
st.subheader("Component Details")
|
146 |
+
st.write(user_data)
|
147 |
+
|
148 |
+
|
149 |
+
# define the prediction function
|
150 |
+
def prediction(user_data):
|
151 |
+
|
152 |
+
predicted_max_number_of_repairs = model.predict(user_data)
|
153 |
+
|
154 |
+
# return the predicted max number of repairs as output
|
155 |
+
return np.round(predicted_max_number_of_repairs[0])
|
156 |
+
# Function calling
|
157 |
+
y_pred = prediction(user_data)
|
158 |
+
st.write("Click here to see the Predictions")
|
159 |
+
if st.button("Predict"):
|
160 |
+
st.subheader(f"Next Failure is {y_pred} hours ")
|