File size: 529 Bytes
a7b127f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
066b8cd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
import pickle
import warnings
import streamlit as st

warnings.simplefilter("ignore", UserWarning)

MODEL = pickle.load(open('IF_model_anomaly.pkl','rb'))

st.title("Retail Anomaly")
def prediction(sales,model):
    sales = np.float64(sales)
    pred = model.predict(sales.reshape(-1,1))[0]
    if pred == -1:
        return "Outlier"
    else:
        return "Not outlier"

sales = st.number_input("Enter the Sales Value")
def fun():
    st.header(prediction(sales,MODEL))
if st.button("Predict"):
    fun()