|
import tensorflow as tf |
|
from tensorflow import keras |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn import preprocessing |
|
import seaborn as sns |
|
from sklearn.preprocessing import LabelEncoder |
|
import streamlit as st |
|
|
|
st.title("Rouge Component Model") |
|
|
|
df = pd.read_csv('identify_rogue_50K_ALL.csv') |
|
print("Dataset Size:",df.shape) |
|
|
|
|
|
df.drop(['SRU serial number','Date of Manufacture','Last Maintenance Date','date of last failure'], axis = 1, inplace=True) |
|
|
|
def label_encoder(df): |
|
le = LabelEncoder() |
|
cat = df.select_dtypes(include='O').keys() |
|
categ = list(cat) |
|
df[categ] = df[categ].apply(le.fit_transform) |
|
return df |
|
|
|
def preprocess_dataset(X): |
|
x = X.values |
|
min_max_scaler = preprocessing.MinMaxScaler() |
|
x_scaled = min_max_scaler.fit_transform(x) |
|
X_df = pd.DataFrame(x_scaled) |
|
return X_df |
|
|
|
def prediction(df): |
|
X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"] |
|
y = df["Rogue LRU/SRU (Target)"] |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) |
|
print(X_train.shape) |
|
print(X_test.shape) |
|
X_test_encoded = label_encoder(X_test) |
|
X_test_df = preprocess_dataset(X_test_encoded) |
|
x_model = loaded_model = tf.keras.models.load_model(r'/content/drive/MyDrive/Colab Notebooks/HAL/saved_model/my_model') |
|
y_pred = x_model.predict(X_test_df) |
|
predicition = [] |
|
for i in list(y_pred): |
|
if i[0]<=0.8: |
|
predicition.append(0) |
|
else: |
|
predicition.append(1) |
|
X_test['Actual_time_to_repair'] = y_test |
|
X_test['Predicted_time_to_repair'] = predicition |
|
|
|
print(X_test.head()) |
|
prediction(df) |