import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn import preprocessing import seaborn as sns from sklearn.preprocessing import LabelEncoder import streamlit as st st.title("Rouge Component Model") #Reading Dataset df = pd.read_csv('identify_rogue_50K_ALL.csv') print("Dataset Size:",df.shape) # Dropping the SRU serial number df.drop(['SRU serial number','Date of Manufacture','Last Maintenance Date','date of last failure'], axis = 1, inplace=True) def label_encoder(df): le = LabelEncoder() cat = df.select_dtypes(include='O').keys() categ = list(cat) df[categ] = df[categ].apply(le.fit_transform) return df def preprocess_dataset(X): x = X.values #returns a numpy array min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) X_df = pd.DataFrame(x_scaled) return X_df def prediction(df): X = df.loc[:,df.columns!= "Rogue LRU/SRU (Target)"] y = df["Rogue LRU/SRU (Target)"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) print(X_train.shape) print(X_test.shape) X_test_encoded = label_encoder(X_test) X_test_df = preprocess_dataset(X_test_encoded) x_model = loaded_model = tf.keras.models.load_model('my_model') y_pred = x_model.predict(X_test_df) predicition = [] for i in list(y_pred): if i[0]<=0.8: predicition.append(0) else: predicition.append(1) X_test['Actual_time_to_repair'] = y_test X_test['Predicted_time_to_repair'] = predicition # X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/rogue_test_data.csv') print(X_test.head()) prediction(df)