Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2023, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import mcubes | |
import nvdiffrast.torch as dr | |
from einops import rearrange, repeat | |
from .encoder.dino_wrapper import DinoWrapper | |
from .decoder.transformer import TriplaneTransformer | |
from .renderer.synthesizer import TriplaneSynthesizer | |
from ..utils.mesh_util import xatlas_uvmap | |
class InstantNeRF(nn.Module): | |
""" | |
Full model of the large reconstruction model. | |
""" | |
def __init__( | |
self, | |
encoder_freeze: bool = False, | |
encoder_model_name: str = 'facebook/dino-vitb16', | |
encoder_feat_dim: int = 768, | |
transformer_dim: int = 1024, | |
transformer_layers: int = 16, | |
transformer_heads: int = 16, | |
triplane_low_res: int = 32, | |
triplane_high_res: int = 64, | |
triplane_dim: int = 80, | |
rendering_samples_per_ray: int = 128, | |
): | |
super().__init__() | |
# modules | |
self.encoder = DinoWrapper( | |
model_name=encoder_model_name, | |
freeze=encoder_freeze, | |
) | |
self.transformer = TriplaneTransformer( | |
inner_dim=transformer_dim, | |
num_layers=transformer_layers, | |
num_heads=transformer_heads, | |
image_feat_dim=encoder_feat_dim, | |
triplane_low_res=triplane_low_res, | |
triplane_high_res=triplane_high_res, | |
triplane_dim=triplane_dim, | |
) | |
self.synthesizer = TriplaneSynthesizer( | |
triplane_dim=triplane_dim, | |
samples_per_ray=rendering_samples_per_ray, | |
) | |
def forward_planes(self, images, cameras): | |
# images: [B, V, C_img, H_img, W_img] | |
# cameras: [B, V, 16] | |
B = images.shape[0] | |
# encode images | |
image_feats = self.encoder(images, cameras) | |
image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) | |
# transformer generating planes | |
planes = self.transformer(image_feats) | |
return planes | |
def forward(self, images, cameras, render_cameras, render_size: int): | |
# images: [B, V, C_img, H_img, W_img] | |
# cameras: [B, V, 16] | |
# render_cameras: [B, M, D_cam_render] | |
# render_size: int | |
B, M = render_cameras.shape[:2] | |
planes = self.forward_planes(images, cameras) | |
# render target views | |
render_results = self.synthesizer(planes, render_cameras, render_size) | |
return { | |
'planes': planes, | |
**render_results, | |
} | |
def get_texture_prediction(self, planes, tex_pos, hard_mask=None): | |
''' | |
Predict Texture given triplanes | |
:param planes: the triplane feature map | |
:param tex_pos: Position we want to query the texture field | |
:param hard_mask: 2D silhoueete of the rendered image | |
''' | |
tex_pos = torch.cat(tex_pos, dim=0) | |
if not hard_mask is None: | |
tex_pos = tex_pos * hard_mask.float() | |
batch_size = tex_pos.shape[0] | |
tex_pos = tex_pos.reshape(batch_size, -1, 3) | |
################### | |
# We use mask to get the texture location (to save the memory) | |
if hard_mask is not None: | |
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) | |
sample_tex_pose_list = [] | |
max_point = n_point_list.max() | |
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 | |
for i in range(tex_pos.shape[0]): | |
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) | |
if tex_pos_one_shape.shape[1] < max_point: | |
tex_pos_one_shape = torch.cat( | |
[tex_pos_one_shape, torch.zeros( | |
1, max_point - tex_pos_one_shape.shape[1], 3, | |
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) | |
sample_tex_pose_list.append(tex_pos_one_shape) | |
tex_pos = torch.cat(sample_tex_pose_list, dim=0) | |
tex_feat = self.synthesizer.forward_points(planes, tex_pos)['rgb'] | |
if hard_mask is not None: | |
final_tex_feat = torch.zeros( | |
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) | |
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 | |
for i in range(planes.shape[0]): | |
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) | |
tex_feat = final_tex_feat | |
return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]) | |
def extract_mesh( | |
self, | |
planes: torch.Tensor, | |
mesh_resolution: int = 256, | |
mesh_threshold: int = 10.0, | |
use_texture_map: bool = False, | |
texture_resolution: int = 1024, | |
**kwargs, | |
): | |
''' | |
Extract a 3D mesh from triplane nerf. Only support batch_size 1. | |
:param planes: triplane features | |
:param mesh_resolution: marching cubes resolution | |
:param mesh_threshold: iso-surface threshold | |
:param use_texture_map: use texture map or vertex color | |
:param texture_resolution: the resolution of texture map | |
''' | |
assert planes.shape[0] == 1 | |
device = planes.device | |
grid_out = self.synthesizer.forward_grid( | |
planes=planes, | |
grid_size=mesh_resolution, | |
) | |
vertices, faces = mcubes.marching_cubes( | |
grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), | |
mesh_threshold, | |
) | |
vertices = vertices / (mesh_resolution - 1) * 2 - 1 | |
if not use_texture_map: | |
# query vertex colors | |
vertices_tensor = torch.tensor(vertices, dtype=torch.float32, device=device).unsqueeze(0) | |
vertices_colors = self.synthesizer.forward_points( | |
planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy() | |
vertices_colors = (vertices_colors * 255).astype(np.uint8) | |
return vertices, faces, vertices_colors | |
# use x-atlas to get uv mapping for the mesh | |
vertices = torch.tensor(vertices, dtype=torch.float32, device=device) | |
faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device) | |
ctx = dr.RasterizeCudaContext(device=device) | |
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( | |
ctx, vertices, faces, resolution=texture_resolution) | |
tex_hard_mask = tex_hard_mask.float() | |
# query the texture field to get the RGB color for texture map | |
tex_feat = self.get_texture_prediction( | |
planes, [gb_pos], tex_hard_mask) | |
background_feature = torch.zeros_like(tex_feat) | |
img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) | |
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) | |
return vertices, faces, uvs, mesh_tex_idx, texture_map |