Thouph commited on
Commit
dc06542
·
verified ·
1 Parent(s): aa1f337

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ florence2_implementation/__pycache__/modeling_florence2.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
florence2_implementation/__pycache__/configuration_florence2.cpython-311.pyc ADDED
Binary file (15 kB). View file
 
florence2_implementation/__pycache__/modeling_florence2.cpython-311.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c54add3d4a254d841c3a87b75db703be9b1eda950e1a6147de80655dae415d0c
3
+ size 140330
florence2_implementation/configuration_florence2.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ """ Florence-2 configuration"""
16
+
17
+ from typing import Optional
18
+
19
+ from transformers import AutoConfig
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ class Florence2VisionConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
28
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+ Args:
35
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
36
+ The dropout rate of the drop path layer.
37
+ patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
38
+ The patch size of the image.
39
+ patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
40
+ The patch stride of the image.
41
+ patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
42
+ The patch padding of the image.
43
+ patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
44
+ Whether to apply layer normalization before the patch embedding layer.
45
+ enable_checkpoint (`bool`, *optional*, defaults to False):
46
+ Whether to enable checkpointing.
47
+ dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
48
+ The dimension of the embedding layer.
49
+ num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
50
+ The number of attention heads.
51
+ num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
52
+ The number of groups.
53
+ depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
54
+ The depth of the model.
55
+ window_size (`int`, *optional*, defaults to 12):
56
+ The window size of the model.
57
+ projection_dim (`int`, *optional*, defaults to 1024):
58
+ The dimension of the projection layer.
59
+ visual_temporal_embedding (`dict`, *optional*):
60
+ The configuration of the visual temporal embedding.
61
+ image_pos_embed (`dict`, *optional*):
62
+ The configuration of the image position embedding.
63
+ image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
64
+ The source of the image feature.
65
+ Example:
66
+
67
+ ```python
68
+ >>> from transformers import Florence2VisionConfig, Florence2VisionModel
69
+
70
+ >>> # Initializing a Florence2 Vision style configuration
71
+ >>> configuration = Florence2VisionConfig()
72
+
73
+ >>> # Initializing a model (with random weights)
74
+ >>> model = Florence2VisionModel(configuration)
75
+
76
+ >>> # Accessing the model configuration
77
+ >>> configuration = model.config
78
+ ```"""
79
+
80
+ model_type = "florence2_vision"
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ drop_path_rate=0.1,
86
+ patch_size=[7, 3, 3, 3],
87
+ patch_stride=[4, 2, 2, 2],
88
+ patch_padding=[3, 1, 1, 1],
89
+ patch_prenorm=[False, True, True, True],
90
+ enable_checkpoint=False,
91
+ dim_embed=[256, 512, 1024, 2048],
92
+ num_heads=[8, 16, 32, 64],
93
+ num_groups=[8, 16, 32, 64],
94
+ depths=[1, 1, 9, 1],
95
+ window_size=12,
96
+ projection_dim=1024,
97
+ visual_temporal_embedding=None,
98
+ image_pos_embed=None,
99
+ image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
100
+ **kwargs,
101
+ ):
102
+ self.drop_path_rate = drop_path_rate
103
+ self.patch_size = patch_size
104
+ self.patch_stride = patch_stride
105
+ self.patch_padding = patch_padding
106
+ self.patch_prenorm = patch_prenorm
107
+ self.enable_checkpoint = enable_checkpoint
108
+ self.dim_embed = dim_embed
109
+ self.num_heads = num_heads
110
+ self.num_groups = num_groups
111
+ self.depths = depths
112
+ self.window_size = window_size
113
+ self.projection_dim = projection_dim
114
+ self.visual_temporal_embedding = visual_temporal_embedding
115
+ self.image_pos_embed = image_pos_embed
116
+ self.image_feature_source = image_feature_source
117
+
118
+ super().__init__(**kwargs)
119
+
120
+
121
+
122
+ class Florence2LanguageConfig(PretrainedConfig):
123
+ r"""
124
+ This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
125
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
126
+ defaults will yield a similar configuration to that of the BART
127
+ [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
128
+
129
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
130
+ documentation from [`PretrainedConfig`] for more information.
131
+
132
+
133
+ Args:
134
+ vocab_size (`int`, *optional*, defaults to 51289):
135
+ Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
136
+ `inputs_ids` passed when calling [`Florence2LanguageModel`].
137
+ d_model (`int`, *optional*, defaults to 1024):
138
+ Dimensionality of the layers and the pooler layer.
139
+ encoder_layers (`int`, *optional*, defaults to 12):
140
+ Number of encoder layers.
141
+ decoder_layers (`int`, *optional*, defaults to 12):
142
+ Number of decoder layers.
143
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
144
+ Number of attention heads for each attention layer in the Transformer encoder.
145
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
146
+ Number of attention heads for each attention layer in the Transformer decoder.
147
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
148
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
149
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
150
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
151
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
152
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
153
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
154
+ dropout (`float`, *optional*, defaults to 0.1):
155
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
156
+ attention_dropout (`float`, *optional*, defaults to 0.0):
157
+ The dropout ratio for the attention probabilities.
158
+ activation_dropout (`float`, *optional*, defaults to 0.0):
159
+ The dropout ratio for activations inside the fully connected layer.
160
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
161
+ The dropout ratio for classifier.
162
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
163
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
164
+ just in case (e.g., 512 or 1024 or 2048).
165
+ init_std (`float`, *optional*, defaults to 0.02):
166
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
167
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
168
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
169
+ for more details.
170
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
171
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
172
+ for more details.
173
+ scale_embedding (`bool`, *optional*, defaults to `False`):
174
+ Scale embeddings by diving by sqrt(d_model).
175
+ use_cache (`bool`, *optional*, defaults to `True`):
176
+ Whether or not the model should return the last key/values attentions (not used by all models).
177
+ num_labels (`int`, *optional*, defaults to 3):
178
+ The number of labels to use in [`Florence2LanguageForSequenceClassification`].
179
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
180
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
181
+ `eos_token_id`.
182
+
183
+ Example:
184
+
185
+ ```python
186
+ >>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
187
+
188
+ >>> # Initializing a Florence2 Language style configuration
189
+ >>> configuration = Florence2LanguageConfig()
190
+
191
+ >>> # Initializing a model (with random weights)
192
+ >>> model = Florence2LangaugeModel(configuration)
193
+
194
+ >>> # Accessing the model configuration
195
+ >>> configuration = model.config
196
+ ```"""
197
+
198
+ model_type = "florence2_language"
199
+ keys_to_ignore_at_inference = ["past_key_values"]
200
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
201
+
202
+ def __init__(
203
+ self,
204
+ vocab_size=51289,
205
+ max_position_embeddings=1024,
206
+ encoder_layers=12,
207
+ encoder_ffn_dim=4096,
208
+ encoder_attention_heads=16,
209
+ decoder_layers=12,
210
+ decoder_ffn_dim=4096,
211
+ decoder_attention_heads=16,
212
+ encoder_layerdrop=0.0,
213
+ decoder_layerdrop=0.0,
214
+ activation_function="gelu",
215
+ d_model=1024,
216
+ dropout=0.1,
217
+ attention_dropout=0.0,
218
+ activation_dropout=0.0,
219
+ init_std=0.02,
220
+ classifier_dropout=0.0,
221
+ scale_embedding=False,
222
+ use_cache=True,
223
+ num_labels=3,
224
+ pad_token_id=1,
225
+ bos_token_id=0,
226
+ eos_token_id=2,
227
+ is_encoder_decoder=True,
228
+ decoder_start_token_id=2,
229
+ forced_eos_token_id=2,
230
+ **kwargs,
231
+ ):
232
+ self.vocab_size = vocab_size
233
+ self.max_position_embeddings = max_position_embeddings
234
+ self.d_model = d_model
235
+ self.encoder_ffn_dim = encoder_ffn_dim
236
+ self.encoder_layers = encoder_layers
237
+ self.encoder_attention_heads = encoder_attention_heads
238
+ self.decoder_ffn_dim = decoder_ffn_dim
239
+ self.decoder_layers = decoder_layers
240
+ self.decoder_attention_heads = decoder_attention_heads
241
+ self.dropout = dropout
242
+ self.attention_dropout = attention_dropout
243
+ self.activation_dropout = activation_dropout
244
+ self.activation_function = activation_function
245
+ self.init_std = init_std
246
+ self.encoder_layerdrop = encoder_layerdrop
247
+ self.decoder_layerdrop = decoder_layerdrop
248
+ self.classifier_dropout = classifier_dropout
249
+ self.use_cache = use_cache
250
+ self.num_hidden_layers = encoder_layers
251
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
252
+
253
+ super().__init__(
254
+ num_labels=num_labels,
255
+ pad_token_id=pad_token_id,
256
+ bos_token_id=bos_token_id,
257
+ eos_token_id=eos_token_id,
258
+ is_encoder_decoder=is_encoder_decoder,
259
+ decoder_start_token_id=decoder_start_token_id,
260
+ forced_eos_token_id=forced_eos_token_id,
261
+ **kwargs,
262
+ )
263
+
264
+ # ensure backward compatibility for BART CNN models
265
+ if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
266
+ self.forced_bos_token_id = self.bos_token_id
267
+ warnings.warn(
268
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
269
+ "The config can simply be saved and uploaded again to be fixed."
270
+ )
271
+
272
+ class Florence2Config(PretrainedConfig):
273
+ r"""
274
+ This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
275
+ Florence-2 model according to the specified arguments, defining the model architecture.
276
+
277
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
278
+ documentation from [`PretrainedConfig`] for more information.
279
+
280
+ Args:
281
+ vision_config (`Florence2VisionConfig`, *optional*):
282
+ Custom vision config or dict
283
+ text_config (`Union[AutoConfig, dict]`, *optional*):
284
+ The config object of the text backbone.
285
+ ignore_index (`int`, *optional*, defaults to -100):
286
+ The ignore index for the loss function.
287
+ vocab_size (`int`, *optional*, defaults to 51289):
288
+ Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
289
+ `inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
290
+ projection_dim (`int`, *optional*, defaults to 1024):
291
+ Dimension of the multimodal projection space.
292
+
293
+ Example:
294
+
295
+ ```python
296
+ >>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
297
+
298
+ >>> # Initializing a clip-like vision config
299
+ >>> vision_config = CLIPVisionConfig()
300
+
301
+ >>> # Initializing a Bart config
302
+ >>> text_config = BartConfig()
303
+
304
+ >>> # Initializing a Florence-2 configuration
305
+ >>> configuration = Florence2Config(vision_config, text_config)
306
+
307
+ >>> # Initializing a model from the florence-2 configuration
308
+ >>> model = Florence2ForConditionalGeneration(configuration)
309
+
310
+ >>> # Accessing the model configuration
311
+ >>> configuration = model.config
312
+ ```"""
313
+
314
+ model_type = "florence2"
315
+ is_composition = False
316
+
317
+ def __init__(
318
+ self,
319
+ vision_config=None,
320
+ text_config=None,
321
+ ignore_index=-100,
322
+ vocab_size=51289,
323
+ projection_dim=1024,
324
+ **kwargs,
325
+ ):
326
+ self.ignore_index = ignore_index
327
+ self.vocab_size = vocab_size
328
+ self.projection_dim = projection_dim
329
+ if vision_config is not None:
330
+ vision_config = PretrainedConfig(**vision_config)
331
+ self.vision_config = vision_config
332
+ self.vocab_size = self.vocab_size
333
+
334
+ self.text_config = text_config
335
+ if text_config is not None:
336
+ self.text_config = Florence2LanguageConfig(**text_config)
337
+
338
+
339
+ super().__init__(**kwargs)
340
+
florence2_implementation/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "num_beams": 3,
3
+ "early_stopping": false
4
+ }
florence2_implementation/modeling_florence2.py ADDED
The diff for this file is too large to render. See raw diff
 
florence2_implementation/preprocessor_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_florence2.Florence2Processor"
4
+ },
5
+ "_valid_processor_keys": [
6
+ "images",
7
+ "do_resize",
8
+ "size",
9
+ "resample",
10
+ "do_rescale",
11
+ "rescale_factor",
12
+ "do_normalize",
13
+ "image_mean",
14
+ "image_std",
15
+ "return_tensors",
16
+ "data_format",
17
+ "input_data_format",
18
+ "do_convert_rgb"
19
+ ],
20
+ "do_convert_rgb": null,
21
+ "do_normalize": true,
22
+ "do_rescale": true,
23
+ "do_resize": true,
24
+ "do_center_crop": false,
25
+ "image_processor_type": "CLIPImageProcessor",
26
+ "image_seq_length": 577,
27
+ "image_mean": [0.485, 0.456, 0.406],
28
+ "image_std": [0.229, 0.224, 0.225],
29
+ "processor_class": "Florence2Processor",
30
+ "resample": 3,
31
+ "size": {
32
+ "height": 768,
33
+ "width":768
34
+ },
35
+ "crop_size": {
36
+ "height": 768,
37
+ "width": 768
38
+ }
39
+ }
florence2_implementation/processing_florence2.py ADDED
@@ -0,0 +1,1147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Florence-2.
17
+ """
18
+
19
+ import re
20
+ import logging
21
+ from typing import List, Optional, Union
22
+ import numpy as np
23
+ import math
24
+
25
+ import torch
26
+
27
+ from transformers.feature_extraction_utils import BatchFeature
28
+ from transformers.image_utils import ImageInput, is_valid_image
29
+ from transformers.processing_utils import ProcessorMixin
30
+ from transformers.tokenization_utils_base import (
31
+ PaddingStrategy,
32
+ PreTokenizedInput,
33
+ TextInput,
34
+ TruncationStrategy,
35
+ )
36
+ from transformers import BartTokenizer, BartTokenizerFast
37
+ from transformers.utils import TensorType
38
+
39
+
40
+ logger = logging.getLogger(__name__)
41
+
42
+ # Copied from transformers.models.idefics2.processing_idefics2.is_url
43
+ def is_url(val) -> bool:
44
+ return isinstance(val, str) and val.startswith("http")
45
+
46
+ # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
47
+ def is_image_or_image_url(elem):
48
+ return is_url(elem) or is_valid_image(elem)
49
+
50
+
51
+ def _is_str_or_image(elem):
52
+ return isinstance(elem, (str)) or is_image_or_image_url(elem)
53
+
54
+
55
+ class Florence2Processor(ProcessorMixin):
56
+ r"""
57
+ Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
58
+
59
+ [`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
60
+ [`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
61
+
62
+ Args:
63
+ image_processor ([`CLIPImageProcessor`], *optional*):
64
+ The image processor is a required input.
65
+ tokenizer ([`BartTokenizerFast`], *optional*):
66
+ The tokenizer is a required input.
67
+ """
68
+
69
+ attributes = ["image_processor", "tokenizer"]
70
+ image_processor_class = "CLIPImageProcessor"
71
+ tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
72
+
73
+ def __init__(
74
+ self,
75
+ image_processor=None,
76
+ tokenizer=None,
77
+ ):
78
+ if image_processor is None:
79
+ raise ValueError("You need to specify an `image_processor`.")
80
+ if tokenizer is None:
81
+ raise ValueError("You need to specify a `tokenizer`.")
82
+ if not hasattr(image_processor, "image_seq_length"):
83
+ raise ValueError("Image processor is missing an `image_seq_length` attribute.")
84
+
85
+ self.image_seq_length = image_processor.image_seq_length
86
+
87
+ tokens_to_add = {
88
+ 'additional_special_tokens': \
89
+ tokenizer.additional_special_tokens + \
90
+ ['<od>', '</od>', '<ocr>', '</ocr>'] + \
91
+ [f'<loc_{x}>' for x in range(1000)] + \
92
+ ['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
93
+ }
94
+ tokenizer.add_special_tokens(tokens_to_add)
95
+
96
+ self.tasks_answer_post_processing_type = {
97
+ '<OCR>': 'pure_text',
98
+ '<OCR_WITH_REGION>': 'ocr',
99
+ '<CAPTION>': 'pure_text',
100
+ '<DETAILED_CAPTION>': 'pure_text',
101
+ '<MORE_DETAILED_CAPTION>': 'pure_text',
102
+ '<OD>': 'description_with_bboxes',
103
+ '<DENSE_REGION_CAPTION>': 'description_with_bboxes',
104
+ '<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
105
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
106
+ '<REGION_TO_SEGMENTATION>': 'polygons',
107
+ '<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
108
+ '<REGION_TO_CATEGORY>': 'pure_text',
109
+ '<REGION_TO_DESCRIPTION>': 'pure_text',
110
+ '<REGION_TO_OCR>': 'pure_text',
111
+ '<REGION_PROPOSAL>': 'bboxes'
112
+ }
113
+
114
+ self.task_prompts_without_inputs = {
115
+ '<OCR>': 'What is the text in the image?',
116
+ '<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
117
+ '<CAPTION>': 'What does the image describe?',
118
+ '<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
119
+ '<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
120
+ '<OD>': 'Locate the objects with category name in the image.',
121
+ '<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
122
+ '<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
123
+ }
124
+
125
+ self.task_prompts_with_input = {
126
+ '<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
127
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
128
+ '<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
129
+ '<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
130
+ '<REGION_TO_CATEGORY>': 'What is the region {input}?',
131
+ '<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
132
+ '<REGION_TO_OCR>': 'What text is in the region {input}?',
133
+ }
134
+
135
+ self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
136
+
137
+
138
+ super().__init__(image_processor, tokenizer)
139
+
140
+ def _construct_prompts(self, text):
141
+ # replace the task tokens with the task prompts if task token is in the text
142
+ prompts = []
143
+ for _text in text:
144
+ # 1. fixed task prompts without additional inputs
145
+ for task_token, task_prompt in self.task_prompts_without_inputs.items():
146
+ if task_token in _text:
147
+ assert _text == task_token, f"Task token {task_token} should be the only token in the text."
148
+ _text = task_prompt
149
+ break
150
+ # 2. task prompts with additional inputs
151
+ for task_token, task_prompt in self.task_prompts_with_input.items():
152
+ if task_token in _text:
153
+ _text = task_prompt.format(input=_text.replace(task_token, ''))
154
+ break
155
+ prompts.append(_text)
156
+ return prompts
157
+
158
+ def __call__(
159
+ self,
160
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
161
+ images: ImageInput = None,
162
+ tokenize_newline_separately: bool = True,
163
+ padding: Union[bool, str, PaddingStrategy] = False,
164
+ truncation: Union[bool, str, TruncationStrategy] = None,
165
+ max_length=None,
166
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
167
+ do_resize: bool = None,
168
+ do_normalize: bool = None,
169
+ image_mean: Optional[Union[float, List[float]]] = None,
170
+ image_std: Optional[Union[float, List[float]]] = None,
171
+ data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
172
+ input_data_format: Optional[
173
+ Union[str, "ChannelDimension"] # noqa: F821
174
+ ] = None,
175
+ resample: "PILImageResampling" = None, # noqa: F821
176
+ do_convert_rgb: bool = None,
177
+ do_thumbnail: bool = None,
178
+ do_align_long_axis: bool = None,
179
+ do_rescale: bool = None,
180
+ ) -> BatchFeature:
181
+ """
182
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
183
+ and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
184
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
185
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
186
+ of the above two methods for more information.
187
+
188
+ Args:
189
+ text (`str`, `List[str]`, `List[List[str]]`):
190
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
191
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
192
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
193
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
194
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
195
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
196
+ number of channels, H and W are image height and width.
197
+ tokenize_newline_separately (`bool`, defaults to `True`):
198
+ Adds a separately tokenized '\n' at the end of the prompt.
199
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
200
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
201
+ index) among:
202
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
203
+ sequence if provided).
204
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
205
+ acceptable input length for the model if that argument is not provided.
206
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
207
+ lengths).
208
+ max_length (`int`, *optional*):
209
+ Maximum length of the returned list and optionally padding length (see above).
210
+ truncation (`bool`, *optional*):
211
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
212
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
213
+ If set, will return tensors of a particular framework. Acceptable values are:
214
+
215
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
216
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
217
+ - `'np'`: Return NumPy `np.ndarray` objects.
218
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
219
+
220
+ Returns:
221
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
222
+
223
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
224
+ is provided, the `input_ids` will also contain the suffix input ids.
225
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
226
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
227
+ `None`).
228
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
229
+ - **labels** -- Labels compatible with training if `suffix` is not None
230
+ """
231
+
232
+ return_token_type_ids = False
233
+
234
+ if images is None:
235
+ raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
236
+ if text is None:
237
+ logger.warning_once(
238
+ "You are using Florence-2 without a text prompt."
239
+ )
240
+ text = ""
241
+
242
+ if isinstance(text, List) and isinstance(images, List):
243
+ if len(images) < len(text):
244
+ raise ValueError(
245
+ f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
246
+ )
247
+ if _is_str_or_image(text):
248
+ text = [text]
249
+ elif isinstance(text, list) and _is_str_or_image(text[0]):
250
+ pass
251
+
252
+ pixel_values = self.image_processor(
253
+ images,
254
+ do_resize=do_resize,
255
+ do_normalize=do_normalize,
256
+ return_tensors=return_tensors,
257
+ image_mean=image_mean,
258
+ image_std=image_std,
259
+ input_data_format=input_data_format,
260
+ data_format=data_format,
261
+ resample=resample,
262
+ do_convert_rgb=do_convert_rgb,
263
+ )["pixel_values"]
264
+
265
+ if max_length is not None:
266
+ max_length -= self.image_seq_length # max_length has to account for the image tokens
267
+
268
+ text = self._construct_prompts(text)
269
+
270
+ inputs = self.tokenizer(
271
+ text,
272
+ return_tensors=return_tensors,
273
+ padding=padding,
274
+ max_length=max_length,
275
+ truncation=truncation,
276
+ return_token_type_ids=return_token_type_ids,
277
+ )
278
+
279
+ return_data = {**inputs, "pixel_values": pixel_values}
280
+
281
+ if return_token_type_ids:
282
+ labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
283
+ return_data.update({"labels": labels})
284
+ return BatchFeature(data=return_data)
285
+
286
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
287
+ def batch_decode(self, *args, **kwargs):
288
+ """
289
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
290
+ refer to the docstring of this method for more information.
291
+ """
292
+ return self.tokenizer.batch_decode(*args, **kwargs)
293
+
294
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
295
+ def decode(self, *args, **kwargs):
296
+ """
297
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
298
+ the docstring of this method for more information.
299
+ """
300
+ return self.tokenizer.decode(*args, **kwargs)
301
+
302
+ @property
303
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
304
+ def model_input_names(self):
305
+ tokenizer_input_names = self.tokenizer.model_input_names
306
+ image_processor_input_names = self.image_processor.model_input_names
307
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
308
+
309
+ def post_process_generation(self, text=None, sequence=None, transition_beam_score=None, task=None, image_size=None):
310
+ """
311
+ Post-process the output of the model to each of the task outputs.
312
+
313
+ Args:
314
+ text (`str`): The text to post-process.
315
+ task (`str`): The task to post-process the text for.
316
+ image_size (`Tuple[int, int]`): The size of the image. height x width.
317
+ """
318
+
319
+ task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
320
+ task_answer = self.post_processor(
321
+ text=text,
322
+ sequence=sequence,
323
+ transition_beam_score=transition_beam_score,
324
+ image_size=image_size,
325
+ parse_tasks=task_answer_post_processing_type,
326
+ )[task_answer_post_processing_type]
327
+
328
+ if task_answer_post_processing_type == 'pure_text':
329
+ final_answer = task_answer
330
+ # remove the special tokens
331
+ final_answer = final_answer.replace('<s>', '').replace('</s>', '')
332
+ elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
333
+ od_instances = task_answer
334
+ bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
335
+ labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
336
+ final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
337
+ if len(od_instances) and 'score' in od_instances[0]:
338
+ scores_od = [_od_instance['score'] for _od_instance in od_instances]
339
+ final_answer['scores'] = scores_od
340
+ elif task_answer_post_processing_type in ['ocr']:
341
+ bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
342
+ labels = [str(_od_instance['text']) for _od_instance in task_answer]
343
+ final_answer = {'quad_boxes': bboxes, 'labels': labels}
344
+ elif task_answer_post_processing_type in ['phrase_grounding']:
345
+ bboxes = []
346
+ labels = []
347
+ for _grounded_phrase in task_answer:
348
+ for _bbox in _grounded_phrase['bbox']:
349
+ bboxes.append(_bbox)
350
+ labels.append(_grounded_phrase['cat_name'])
351
+ final_answer = {'bboxes': bboxes, 'labels': labels}
352
+ elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
353
+ labels = []
354
+ polygons = []
355
+ for result in task_answer:
356
+ label = result['cat_name']
357
+ _polygons = result['polygons']
358
+ labels.append(label)
359
+ polygons.append(_polygons)
360
+ final_answer = {'polygons': polygons, 'labels': labels}
361
+ elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
362
+ bboxes = []
363
+ bboxes_labels = []
364
+ polygons = []
365
+ polygons_labels = []
366
+ for result in task_answer:
367
+ label = result['cat_name']
368
+ if 'polygons' in result:
369
+ _polygons = result['polygons']
370
+ polygons.append(_polygons)
371
+ polygons_labels.append(label)
372
+ else:
373
+ _bbox = result['bbox']
374
+ bboxes.append(_bbox)
375
+ bboxes_labels.append(label)
376
+ final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
377
+ else:
378
+ raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
379
+
380
+ final_answer = {
381
+ task: final_answer}
382
+ return final_answer
383
+
384
+ class BoxQuantizer(object):
385
+ def __init__(self, mode, bins):
386
+ self.mode = mode
387
+ self.bins = bins
388
+
389
+ def quantize(self, boxes: torch.Tensor, size):
390
+ bins_w, bins_h = self.bins # Quantization bins.
391
+ size_w, size_h = size # Original image size.
392
+ size_per_bin_w = size_w / bins_w
393
+ size_per_bin_h = size_h / bins_h
394
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
395
+
396
+ if self.mode == 'floor':
397
+ quantized_xmin = (
398
+ xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
399
+ quantized_ymin = (
400
+ ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
401
+ quantized_xmax = (
402
+ xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
403
+ quantized_ymax = (
404
+ ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
405
+
406
+ elif self.mode == 'round':
407
+ raise NotImplementedError()
408
+
409
+ else:
410
+ raise ValueError('Incorrect quantization type.')
411
+
412
+ quantized_boxes = torch.cat(
413
+ (quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
414
+ ).int()
415
+
416
+ return quantized_boxes
417
+
418
+ def dequantize(self, boxes: torch.Tensor, size):
419
+ bins_w, bins_h = self.bins # Quantization bins.
420
+ size_w, size_h = size # Original image size.
421
+ size_per_bin_w = size_w / bins_w
422
+ size_per_bin_h = size_h / bins_h
423
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
424
+
425
+ if self.mode == 'floor':
426
+ # Add 0.5 to use the center position of the bin as the coordinate.
427
+ dequantized_xmin = (xmin + 0.5) * size_per_bin_w
428
+ dequantized_ymin = (ymin + 0.5) * size_per_bin_h
429
+ dequantized_xmax = (xmax + 0.5) * size_per_bin_w
430
+ dequantized_ymax = (ymax + 0.5) * size_per_bin_h
431
+
432
+ elif self.mode == 'round':
433
+ raise NotImplementedError()
434
+
435
+ else:
436
+ raise ValueError('Incorrect quantization type.')
437
+
438
+ dequantized_boxes = torch.cat(
439
+ (dequantized_xmin, dequantized_ymin,
440
+ dequantized_xmax, dequantized_ymax), dim=-1
441
+ )
442
+
443
+ return dequantized_boxes
444
+
445
+
446
+ class CoordinatesQuantizer(object):
447
+ """
448
+ Quantize coornidates (Nx2)
449
+ """
450
+
451
+ def __init__(self, mode, bins):
452
+ self.mode = mode
453
+ self.bins = bins
454
+
455
+ def quantize(self, coordinates: torch.Tensor, size):
456
+ bins_w, bins_h = self.bins # Quantization bins.
457
+ size_w, size_h = size # Original image size.
458
+ size_per_bin_w = size_w / bins_w
459
+ size_per_bin_h = size_h / bins_h
460
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
461
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
462
+
463
+ if self.mode == 'floor':
464
+ quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
465
+ quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
466
+
467
+ elif self.mode == 'round':
468
+ raise NotImplementedError()
469
+
470
+ else:
471
+ raise ValueError('Incorrect quantization type.')
472
+
473
+ quantized_coordinates = torch.cat(
474
+ (quantized_x, quantized_y), dim=-1
475
+ ).int()
476
+
477
+ return quantized_coordinates
478
+
479
+ def dequantize(self, coordinates: torch.Tensor, size):
480
+ bins_w, bins_h = self.bins # Quantization bins.
481
+ size_w, size_h = size # Original image size.
482
+ size_per_bin_w = size_w / bins_w
483
+ size_per_bin_h = size_h / bins_h
484
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
485
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
486
+
487
+ if self.mode == 'floor':
488
+ # Add 0.5 to use the center position of the bin as the coordinate.
489
+ dequantized_x = (x + 0.5) * size_per_bin_w
490
+ dequantized_y = (y + 0.5) * size_per_bin_h
491
+
492
+ elif self.mode == 'round':
493
+ raise NotImplementedError()
494
+
495
+ else:
496
+ raise ValueError('Incorrect quantization type.')
497
+
498
+ dequantized_coordinates = torch.cat(
499
+ (dequantized_x, dequantized_y), dim=-1
500
+ )
501
+
502
+ return dequantized_coordinates
503
+
504
+
505
+ class Florence2PostProcesser(object):
506
+ r"""
507
+ Florence-2 post process for converting text prediction to various tasks results.
508
+
509
+ Args:
510
+ config: A dict of configs.
511
+ tokenizer: A tokenizer for decoding text to spans.
512
+ sample config:
513
+ UNIFIED_POST_PROCESS:
514
+ # commom configs
515
+ NUM_BBOX_HEIGHT_BINS: 1000
516
+ NUM_BBOX_WIDTH_BINS: 1000
517
+ COORDINATES_HEIGHT_BINS: 1000
518
+ COORDINATES_WIDTH_BINS: 1000
519
+ # task specific configs, override the common configs
520
+ PRASE_TASKS:
521
+ - TASK_NAME: 'video_dense_caption'
522
+ PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
523
+ SCORE_MODE: 'avg_cat_name_scores'
524
+ NUM_BINS: 100
525
+ - TASK_NAME: 'od'
526
+ PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
527
+ SCORE_MODE: 'avg_cat_name_scores'
528
+
529
+ Returns:
530
+ parsed_dict (dict): A dict of parsed results.
531
+ """
532
+ def __init__(
533
+ self,
534
+ tokenizer=None
535
+ ):
536
+ parse_tasks = []
537
+ parse_task_configs = {}
538
+ config = self._create_default_config()
539
+ for task in config['PARSE_TASKS']:
540
+ parse_tasks.append(task['TASK_NAME'])
541
+ parse_task_configs[task['TASK_NAME']] = task
542
+
543
+ self.config = config
544
+ self.parse_tasks = parse_tasks
545
+ self.parse_tasks_configs = parse_task_configs
546
+
547
+ self.tokenizer = tokenizer
548
+ if self.tokenizer is not None:
549
+ self.all_special_tokens = set(self.tokenizer.all_special_tokens)
550
+
551
+ self.init_quantizers()
552
+ self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
553
+
554
+ def _create_black_list_of_phrase_grounding(self):
555
+ black_list = {}
556
+
557
+ if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
558
+ black_list = set(
559
+ ['it', 'I', 'me', 'mine',
560
+ 'you', 'your', 'yours',
561
+ 'he', 'him', 'his',
562
+ 'she', 'her', 'hers',
563
+ 'they', 'them', 'their', 'theirs',
564
+ 'one', 'oneself',
565
+ 'we', 'us', 'our', 'ours',
566
+ 'you', 'your', 'yours',
567
+ 'they', 'them', 'their', 'theirs',
568
+ 'mine', 'yours', 'his', 'hers', 'its',
569
+ 'ours', 'yours', 'theirs',
570
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
571
+ 'ourselves', 'yourselves', 'themselves',
572
+ 'this', 'that',
573
+ 'these', 'those',
574
+ 'who', 'whom', 'whose', 'which', 'what',
575
+ 'who', 'whom', 'whose', 'which', 'that',
576
+ 'all', 'another', 'any', 'anybody', 'anyone', 'anything',
577
+ 'each', 'everybody', 'everyone', 'everything',
578
+ 'few', 'many', 'nobody', 'none', 'one', 'several',
579
+ 'some', 'somebody', 'someone', 'something',
580
+ 'each other', 'one another',
581
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
582
+ 'ourselves', 'yourselves', 'themselves',
583
+ 'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
584
+ 'other objects', 'lots', 'a set',
585
+ ]
586
+ )
587
+
588
+ return black_list
589
+
590
+ def _create_default_config(self):
591
+ config = {
592
+ 'NUM_BBOX_HEIGHT_BINS': 1000,
593
+ 'NUM_BBOX_WIDTH_BINS': 1000,
594
+ 'BOX_QUANTIZATION_MODE': 'floor',
595
+ 'COORDINATES_HEIGHT_BINS': 1000,
596
+ 'COORDINATES_WIDTH_BINS': 1000,
597
+ 'COORDINATES_QUANTIZATION_MODE': 'floor',
598
+ 'PARSE_TASKS': [
599
+ {
600
+ 'TASK_NAME': 'od',
601
+ 'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>',
602
+ 'SCORE_MODE': 'avg_loc_scores'
603
+ },
604
+ {
605
+ 'TASK_NAME': 'ocr',
606
+ 'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
607
+ 'AREA_THRESHOLD': 0.00
608
+ },
609
+ {
610
+ 'TASK_NAME': 'phrase_grounding',
611
+ 'FILTER_BY_BLACK_LIST': True
612
+ },
613
+ {
614
+ 'TASK_NAME': 'pure_text',
615
+ },
616
+ {
617
+ 'TASK_NAME': 'description_with_bboxes',
618
+ 'SCORE_MODE': 'avg_loc_scores'
619
+ },
620
+ {
621
+ 'TASK_NAME': 'description_with_polygons',
622
+ },
623
+ {
624
+ 'TASK_NAME': 'polygons',
625
+ },
626
+ {
627
+ 'TASK_NAME': 'bboxes',
628
+ },
629
+ {
630
+ 'TASK_NAME': 'description_with_bboxes_or_polygons',
631
+ }
632
+ ]
633
+ }
634
+
635
+ return config
636
+
637
+ def init_quantizers(self):
638
+ # we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
639
+ num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
640
+ num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
641
+ box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
642
+ self.box_quantizer = BoxQuantizer(
643
+ box_quantization_mode,
644
+ (num_bbox_width_bins, num_bbox_height_bins),
645
+ )
646
+
647
+ num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
648
+ num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
649
+ box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
650
+ self.coordinates_quantizer = CoordinatesQuantizer(
651
+ box_quantization_mode,
652
+ (num_bbox_width_bins, num_bbox_height_bins),
653
+ )
654
+
655
+ def decode_with_spans(self, tokenizer, token_ids):
656
+ filtered_tokens = tokenizer.convert_ids_to_tokens(
657
+ token_ids, skip_special_tokens=False)
658
+ assert len(filtered_tokens) == len(token_ids)
659
+ sub_texts = []
660
+ for token in filtered_tokens:
661
+ if token in self.all_special_tokens:
662
+ sub_texts.append(token)
663
+ else:
664
+ if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
665
+ sub_text = tokenizer.convert_tokens_to_string([token])
666
+ else:
667
+ raise ValueError(f'type {type(tokenizer)} not supported')
668
+ sub_texts.append(sub_text)
669
+
670
+ text = ''
671
+ spans = []
672
+ for sub_text in sub_texts:
673
+ span = (len(text), len(text) + len(sub_text)) # [start index, end index).
674
+ text += sub_text
675
+ spans.append(span)
676
+ return text, spans
677
+
678
+ def parse_od_from_text_and_spans(
679
+ self,
680
+ text,
681
+ pattern,
682
+ image_size,
683
+ phrase_centric=False
684
+ ):
685
+ parsed = list(re.finditer(pattern, text))
686
+
687
+ instances = []
688
+ for i in range(len(parsed)):
689
+ # Prepare instance.
690
+ instance = {}
691
+
692
+ if phrase_centric:
693
+ bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
694
+ else:
695
+ bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
696
+ instance['bbox'] = self.box_quantizer.dequantize(
697
+ boxes=torch.tensor(bbox_bins),
698
+ size=image_size
699
+ ).tolist()
700
+
701
+ if phrase_centric:
702
+ instance['cat_name'] = parsed[i].group(1).lower().strip()
703
+ else:
704
+ instance['cat_name'] = parsed[i].group(5).lower().strip()
705
+ instances.append(instance)
706
+
707
+ return instances
708
+
709
+ def parse_ocr_from_text_and_spans(self,
710
+ text,
711
+ pattern,
712
+ image_size,
713
+ area_threshold=-1.0,
714
+ ):
715
+ bboxes = []
716
+ labels = []
717
+ text = text.replace('<s>', '')
718
+ # ocr with regions
719
+ parsed = re.findall(pattern, text)
720
+ instances = []
721
+ image_width, image_height = image_size
722
+
723
+ for ocr_line in parsed:
724
+ ocr_content = ocr_line[0]
725
+ quad_box = ocr_line[1:]
726
+ quad_box = [int(i) for i in quad_box]
727
+ quad_box = self.coordinates_quantizer.dequantize(
728
+ torch.tensor(np.array(quad_box).reshape(-1, 2)),
729
+ size=image_size
730
+ ).reshape(-1).tolist()
731
+
732
+ if area_threshold > 0:
733
+ x_coords = [i for i in quad_box[0::2]]
734
+ y_coords = [i for i in quad_box[1::2]]
735
+
736
+ # apply the Shoelace formula
737
+ area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
738
+
739
+ if area < (image_width * image_height) * area_threshold:
740
+ continue
741
+
742
+ bboxes.append(quad_box)
743
+ labels.append(ocr_content)
744
+ instances.append({
745
+ 'quad_box': quad_box,
746
+ 'text': ocr_content,
747
+ })
748
+ return instances
749
+
750
+ def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
751
+ # ignore <s> </s> and <pad>
752
+ cur_span = 0
753
+ if text.startswith('<s>'):
754
+ cur_span += 3
755
+
756
+ text = text.replace('<s>', '')
757
+ text = text.replace('</s>', '')
758
+ text = text.replace('<pad>', '')
759
+
760
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
761
+ phrases = re.findall(pattern, text)
762
+
763
+ # pattern should be text pattern and od pattern
764
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
765
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
766
+
767
+ instances = []
768
+ for pharse_text in phrases:
769
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
770
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
771
+
772
+ if phrase_text_strip == '':
773
+ cur_span += len(pharse_text)
774
+ continue
775
+
776
+ # Prepare instance.
777
+ instance = {}
778
+
779
+ # parse phrase, get string
780
+ phrase = re.search(pattern, phrase_text_strip)
781
+ if phrase is None:
782
+ cur_span += len(pharse_text)
783
+ continue
784
+
785
+ # parse bboxes by box_pattern
786
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
787
+ if len(bboxes_parsed) == 0:
788
+ cur_span += len(pharse_text)
789
+ continue
790
+
791
+ phrase = phrase.group()
792
+ # remove leading and trailing spaces
793
+ phrase = phrase.strip()
794
+
795
+ if phrase in self.black_list_of_phrase_grounding:
796
+ cur_span += len(pharse_text)
797
+ continue
798
+
799
+ # a list of list
800
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
801
+ instance['bbox'] = self.box_quantizer.dequantize(
802
+ boxes=torch.tensor(bbox_bins),
803
+ size=image_size
804
+ ).tolist()
805
+
806
+ # exclude non-ascii characters
807
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
808
+ instance['cat_name'] = phrase
809
+
810
+ instances.append(instance)
811
+
812
+ return instances
813
+
814
+ def parse_description_with_bboxes_from_text_and_spans(
815
+ self,
816
+ text,
817
+ spans=None,
818
+ scores=None,
819
+ score_mode=None,
820
+ pattern=None,
821
+ image_size=None,
822
+ allow_empty_phrase=False
823
+ ):
824
+ def find_matched_token_indices(cur_span, token_spans):
825
+ inds = []
826
+ for i, token_span in enumerate(token_spans):
827
+ if not (token_span[1] <= cur_span[0] or token_span[0] >= cur_span[1]):
828
+ inds.append(i)
829
+ return inds
830
+
831
+ cur_span = 0
832
+ if text.startswith('<s>'):
833
+ cur_span += 3
834
+
835
+ text = text.replace('<s>', '')
836
+ text = text.replace('</s>', '')
837
+ text = text.replace('<pad>', '')
838
+
839
+ if allow_empty_phrase:
840
+ pattern = rf"(?:(?:<loc_\d+>){{4,}})"
841
+ else:
842
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
843
+ phrases = re.findall(pattern, text)
844
+
845
+ # pattern should be text pattern and od pattern
846
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
847
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
848
+
849
+ instances = []
850
+ for pharse_text in phrases:
851
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
852
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
853
+
854
+ if phrase_text_strip == '' and not allow_empty_phrase:
855
+ cur_span += len(pharse_text)
856
+ continue
857
+
858
+ # parse phrase, get string
859
+ phrase = re.search(pattern, phrase_text_strip)
860
+ if phrase is None:
861
+ cur_span += len(pharse_text)
862
+ continue
863
+
864
+ phrase_span = phrase.span()
865
+ phrase = phrase.group()
866
+ # remove leading and trailing spaces
867
+ phrase = phrase.strip()
868
+
869
+ # parse bboxes by box_pattern
870
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
871
+ if len(bboxes_parsed) == 0:
872
+ cur_span += len(pharse_text)
873
+ continue
874
+
875
+ # a list of list
876
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
877
+
878
+ bboxes = self.box_quantizer.dequantize(
879
+ boxes=torch.tensor(bbox_bins),
880
+ size=image_size
881
+ ).tolist()
882
+
883
+ if score_mode == 'avg_loc_scores':
884
+ if spans is None or scores is None:
885
+ all_scores = None
886
+ else:
887
+ bbox_end_spans = [_bboxes_parsed.span(0) for _bboxes_parsed in bboxes_parsed]
888
+ all_scores = []
889
+ for _spans in bbox_end_spans:
890
+ token_inds = find_matched_token_indices((_spans[0] + cur_span, _spans[1]+ cur_span), spans)
891
+ loc_scores = [scores[token_i] for token_i in token_inds]
892
+ score = sum(loc_scores) / len(loc_scores)
893
+ all_scores.append(score)
894
+ elif score_mode == 'avg_cat_name_scores':
895
+ if spans is None or scores is None:
896
+ all_scores = None
897
+ else:
898
+ cat_name_token_inds = find_matched_token_indices((phrase_span[0] + cur_span, phrase_span[1]+cur_span), spans)
899
+ cat_name_scores = [scores[token_i] for token_i in cat_name_token_inds]
900
+ score = sum(cat_name_scores) / len(cat_name_scores)
901
+ all_scores = [score] * len(bboxes)
902
+ elif score_mode is None:
903
+ all_scores = None
904
+ else:
905
+ raise ValueError('Unknown score mode: {}'.format(score_mode))
906
+
907
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
908
+ for _idx, _bboxes in enumerate(bboxes):
909
+ # Prepare instance.
910
+ instance = {}
911
+ instance['bbox'] = _bboxes
912
+ # exclude non-ascii characters
913
+ instance['cat_name'] = phrase
914
+ if all_scores is not None:
915
+ instance['score'] = math.exp(all_scores[_idx])
916
+ instances.append(instance)
917
+
918
+ cur_span += len(pharse_text)
919
+
920
+ return instances
921
+
922
+ def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
923
+ allow_empty_phrase=False,
924
+ polygon_sep_token='<sep>',
925
+ polygon_start_token='<poly>',
926
+ polygon_end_token='</poly>',
927
+ with_box_at_start=False,
928
+ ):
929
+
930
+ # ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
931
+ # ignore <s> </s> and <pad>
932
+
933
+ text = text.replace('<s>', '')
934
+ text = text.replace('</s>', '')
935
+ text = text.replace('<pad>', '')
936
+
937
+ if allow_empty_phrase:
938
+ pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
939
+ else:
940
+ # [^<]+: This part matches one or more characters that are not the < symbol.
941
+ # The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
942
+ #
943
+ pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
944
+ phrases = re.findall(pattern, text)
945
+
946
+ phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
947
+ box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
948
+
949
+ # one polygons instance is separated by polygon_start_token and polygon_end_token
950
+ polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
951
+
952
+ instances = []
953
+ for phrase_text in phrases:
954
+
955
+ # exclude loc_\d+>
956
+ # need to get span if want to include category score
957
+ phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
958
+
959
+ # phrase = phrase.replace('<poly>', '')
960
+ # phrase = phrase.replace('poly>', '')
961
+
962
+ if phrase_text_strip == '' and not allow_empty_phrase:
963
+ continue
964
+
965
+
966
+ # parse phrase, get string
967
+ phrase = re.search(phrase_string_pattern, phrase_text_strip)
968
+ if phrase is None:
969
+ continue
970
+ phrase = phrase.group()
971
+ # remove leading and trailing spaces
972
+ phrase = phrase.strip()
973
+
974
+ # parse bboxes by box_pattern
975
+
976
+ # split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
977
+ if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
978
+ polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
979
+ else:
980
+ polygons_instances_parsed = [phrase_text]
981
+
982
+ for _polygons_instances_parsed in polygons_instances_parsed:
983
+ # Prepare instance.
984
+ instance = {}
985
+
986
+ # polygons_parsed= list(re.finditer(box_pattern, phrase_text))
987
+ if isinstance(_polygons_instances_parsed, str):
988
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
989
+ else:
990
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
991
+ if len(polygons_parsed) == 0:
992
+ continue
993
+
994
+ # a list of list (polygon)
995
+ bbox = []
996
+ polygons = []
997
+ for _polygon_parsed in polygons_parsed:
998
+ # group 1: whole <loc_\d+>...</loc_\d+>
999
+ _polygon = _polygon_parsed.group(1)
1000
+ # parse into list of int
1001
+ _polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
1002
+ if with_box_at_start and len(bbox) == 0:
1003
+ if len(_polygon) > 4:
1004
+ # no valid bbox prediction
1005
+ bbox = _polygon[:4]
1006
+ _polygon = _polygon[4:]
1007
+ else:
1008
+ bbox = [0, 0, 0, 0]
1009
+ # abandon last element if is not paired
1010
+ if len(_polygon) % 2 == 1:
1011
+ _polygon = _polygon[:-1]
1012
+
1013
+ # reshape into (n, 2)
1014
+ _polygon = self.coordinates_quantizer.dequantize(
1015
+ torch.tensor(np.array(_polygon).reshape(-1, 2)),
1016
+ size=image_size
1017
+ ).reshape(-1).tolist()
1018
+ # reshape back
1019
+ polygons.append(_polygon)
1020
+
1021
+ instance['cat_name'] = phrase
1022
+ instance['polygons'] = polygons
1023
+ if len(bbox) != 0:
1024
+ instance['bbox'] = self.box_quantizer.dequantize(
1025
+ boxes=torch.tensor([bbox]),
1026
+ size=image_size
1027
+ ).tolist()[0]
1028
+
1029
+ instances.append(instance)
1030
+
1031
+ return instances
1032
+
1033
+ def __call__(
1034
+ self,
1035
+ text=None,
1036
+ sequence=None,
1037
+ transition_beam_score=None,
1038
+ image_size=None,
1039
+ parse_tasks=None,
1040
+ ):
1041
+ """
1042
+ Args:
1043
+ text: model outputs
1044
+ image_size: (width, height)
1045
+ parse_tasks: a list of tasks to parse, if None, parse all tasks.
1046
+
1047
+ """
1048
+ if parse_tasks is not None:
1049
+ if isinstance(parse_tasks, str):
1050
+ parse_tasks = [parse_tasks]
1051
+ for _parse_task in parse_tasks:
1052
+ assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
1053
+
1054
+ # sequence or text should be provided
1055
+ assert sequence is not None or text is not None, 'sequence or text should be provided'
1056
+ assert sequence is None or text is None, 'only one of sequence and text should be provided'
1057
+
1058
+ if sequence is not None:
1059
+ sequence = sequence.tolist()[1:]
1060
+ text, spans = self.decode_with_spans(self.tokenizer, sequence)
1061
+ if transition_beam_score is not None:
1062
+ transition_beam_score = transition_beam_score.tolist()
1063
+ assert len(sequence) == len(transition_beam_score)
1064
+ else:
1065
+ spans = None
1066
+ transition_beam_score = None
1067
+
1068
+ parsed_dict = {
1069
+ 'text': text
1070
+ }
1071
+
1072
+ for task in self.parse_tasks:
1073
+ if parse_tasks is not None and task not in parse_tasks:
1074
+ continue
1075
+
1076
+ pattern = self.parse_tasks_configs[task].get('PATTERN', None)
1077
+ score_mode = self.parse_tasks_configs[task].get('SCORE_MODE', None)
1078
+
1079
+ if task == 'ocr':
1080
+ instances = self.parse_ocr_from_text_and_spans(
1081
+ text,
1082
+ pattern=pattern,
1083
+ image_size=image_size,
1084
+ area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
1085
+ )
1086
+ parsed_dict['ocr'] = instances
1087
+ elif task == 'phrase_grounding':
1088
+ instances = self.parse_phrase_grounding_from_text_and_spans(
1089
+ text,
1090
+ pattern=pattern,
1091
+ image_size=image_size,
1092
+ )
1093
+ parsed_dict['phrase_grounding'] = instances
1094
+ elif task == 'pure_text':
1095
+ parsed_dict['pure_text'] = text
1096
+ elif task == 'description_with_bboxes':
1097
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1098
+ text,
1099
+ spans=spans,
1100
+ scores=transition_beam_score,
1101
+ score_mode=score_mode,
1102
+ pattern=pattern,
1103
+ image_size=image_size,
1104
+ )
1105
+ parsed_dict['description_with_bboxes'] = instances
1106
+ elif task == 'description_with_polygons':
1107
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1108
+ text,
1109
+ pattern=pattern,
1110
+ image_size=image_size,
1111
+ )
1112
+ parsed_dict['description_with_polygons'] = instances
1113
+ elif task == 'polygons':
1114
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1115
+ text,
1116
+ pattern=pattern,
1117
+ image_size=image_size,
1118
+ allow_empty_phrase=True,
1119
+ )
1120
+ parsed_dict['polygons'] = instances
1121
+ elif task == 'bboxes':
1122
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1123
+ text,
1124
+ pattern=pattern,
1125
+ image_size=image_size,
1126
+ allow_empty_phrase=True,
1127
+ )
1128
+ parsed_dict['bboxes'] = instances
1129
+ elif task == 'description_with_bboxes_or_polygons':
1130
+ if '<poly>' in text:
1131
+ # only support either polygons or bboxes, not both at the same time
1132
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1133
+ text,
1134
+ pattern=pattern,
1135
+ image_size=image_size,
1136
+ )
1137
+ else:
1138
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1139
+ text,
1140
+ pattern=pattern,
1141
+ image_size=image_size,
1142
+ )
1143
+ parsed_dict['description_with_bboxes_or_polygons'] = instances
1144
+ else:
1145
+ raise ValueError("task {} is not supported".format(task))
1146
+
1147
+ return parsed_dict
florence2_implementation/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
florence2_implementation/tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1024
3
+ }
4
+
florence2_implementation/vocab.json ADDED
The diff for this file is too large to render. See raw diff