File size: 1,795 Bytes
d3c95ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import json
import random
random.seed(999)
import torch
from torchvision.transforms import transforms
import gradio as gr
model = torch.load('model.pth', map_location=torch.device('cpu'))
model.eval()
transform = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize(
mean=[
0.5,
0.5,
0.5,
], std=[
0.5,
0.5,
0.5,
])
])
with open("tags_9940.json", "r") as file:
allowed_tags = json.load(file)
allowed_tags = sorted(allowed_tags)
allowed_tags.append("explicit")
allowed_tags.append("questionable")
allowed_tags.append("safe")
def create_tags(image, threshold):
img = image.convert('RGB')
tensor = transform(img).unsqueeze(0)
with torch.no_grad():
logits = model(tensor)
probabilities = torch.nn.functional.sigmoid(logits[0])
indices = torch.where(probabilities > threshold)[0]
values = probabilities[indices]
temp = []
tag_score = dict()
for i in range(indices.size(0)):
temp.append([allowed_tags[indices[i]], values[i].item()])
tag_score[allowed_tags[indices[i]]] = values[i].item()
# temp = sorted(temp, key=lambda x: x[1], reverse=True)
# print("Before adding implicated tags, there are " + str(len(temp)) + " tags")
temp = [t[0] for t in temp]
text_no_impl = " ".join(temp)
return text_no_impl, tag_score
demo = gr.Interface(
create_tags,
inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")],
outputs=[
gr.Textbox(label="Tag String"),
gr.Label(label="Tag Predictions", num_top_classes=200),
],
allow_flagging="never",
)
demo.launch()
|