import json import random random.seed(999) import torch from torchvision.transforms import transforms import gradio as gr from datetime import datetime model = torch.load('model.pth', map_location=torch.device('cpu')) model.eval() transform = transforms.Compose([ transforms.Resize((384, 384)), transforms.ToTensor(), transforms.Normalize( mean=[ 0.5, 0.5, 0.5, ], std=[ 0.5, 0.5, 0.5, ]) ]) with open("tags_9940.json", "r") as file: allowed_tags = json.load(file) allowed_tags = sorted(allowed_tags) allowed_tags.append("explicit") allowed_tags.append("questionable") allowed_tags.append("safe") def create_tags(image, threshold): img = image.convert('RGB') tensor = transform(img).unsqueeze(0) with torch.no_grad(): logits = model(tensor) probabilities = torch.nn.functional.sigmoid(logits[0]) indices = torch.where(probabilities > threshold)[0] values = probabilities[indices] temp = [] tag_score = dict() for i in range(indices.size(0)): temp.append([allowed_tags[indices[i]], values[i].item()]) tag_score[allowed_tags[indices[i]]] = values[i].item() # temp = sorted(temp, key=lambda x: x[1], reverse=True) # print("Before adding implicated tags, there are " + str(len(temp)) + " tags") temp = [t[0] for t in temp] text_no_impl = " ".join(temp) current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") print(f"{current_datetime}: finished.") return text_no_impl, tag_score demo = gr.Interface( create_tags, inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")], outputs=[ gr.Textbox(label="Tag String"), gr.Label(label="Tag Predictions", num_top_classes=200), ], allow_flagging="never", ) demo.launch()