File size: 9,484 Bytes
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45012e5
7924f09
 
1646c30
0aa98e8
1646c30
7924f09
 
 
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45012e5
1646c30
7924f09
 
 
1646c30
 
 
56c61e5
 
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3a90d
 
 
1646c30
 
 
 
 
 
 
45012e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0edb1
45012e5
 
 
 
 
 
 
 
 
 
1646c30
1ef0d2e
1646c30
 
 
 
 
 
 
 
 
45012e5
 
 
1646c30
45012e5
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
7ccf7c7
 
5a9b7ff
af1cf4d
1646c30
 
 
 
ce6781a
1646c30
 
 
 
1ef0d2e
1646c30
 
45012e5
1646c30
45012e5
c923ed8
 
 
8fa44c9
c923ed8
 
 
 
 
 
 
 
 
 
 
1646c30
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import re
import torch
import torchaudio
import gradio as gr
import numpy as np
import tempfile
from einops import rearrange
from ema_pytorch import EMA
from vocos import Vocos
from pydub import AudioSegment
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
    get_tokenizer, 
    convert_char_to_pinyin, 
    save_spectrogram,
)
from transformers import pipeline
import spaces
import librosa
from txtsplit import txtsplit
from detoxify import Detoxify


device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

model = Detoxify('original', device=device)


pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16,
    device=device,
)

# --------------------- Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32  # 16, 32
cfg_strength = 2.0
ode_method = 'euler'
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27  # None or float (duration in seconds)
fix_duration = None

def load_model(exp_name, model_cls, model_cfg, ckpt_step):
    checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
    vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
    model = CFM(
        transformer=model_cls(
            **model_cfg,
            text_num_embeds=vocab_size,
            mel_dim=n_mel_channels
        ),
        mel_spec_kwargs=dict(
            target_sample_rate=target_sample_rate,
            n_mel_channels=n_mel_channels,
            hop_length=hop_length,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    ema_model = EMA(model, include_online_model=False).to(device)
    ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
    ema_model.copy_params_from_ema_to_model()

    return ema_model, model

# load models
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)

F5TTS_ema_model, F5TTS_base_model = load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
E2TTS_ema_model, E2TTS_base_model = load_model("E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)

@spaces.GPU
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
    print(gen_text)
    if model.predict(text)['toxicity'] > 0.8:
        print("Flagged for toxicity:", gen_text)
        raise gr.Error("Your text was flagged for toxicity, please try again with a different text.")
    gr.Info("Converting audio...")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        aseg = AudioSegment.from_file(ref_audio_orig)
        # Convert to mono
        aseg = aseg.set_channels(1)
        audio_duration = len(aseg)
        if audio_duration > 15000:
            gr.Warning("Audio is over 15s, clipping to only first 15s.")
            aseg = aseg[:15000]
        aseg.export(f.name, format="wav")
        ref_audio = f.name
    if exp_name == "F5-TTS":
        ema_model = F5TTS_ema_model
        base_model = F5TTS_base_model
    elif exp_name == "E2-TTS":
        ema_model = E2TTS_ema_model
        base_model = E2TTS_base_model
    
    if not ref_text.strip():
        gr.Info("No reference text provided, transcribing reference audio...")
        ref_text = outputs = pipe(
            ref_audio,
            chunk_length_s=30,
            batch_size=128,
            generate_kwargs={"task": "transcribe"},
            return_timestamps=False,
        )['text'].strip()
        gr.Info("Finished transcription")
    else:
        gr.Info("Using custom reference text...")
    audio, sr = torchaudio.load(ref_audio)
    # Audio
    if audio.shape[0] > 1:
        audio = torch.mean(audio, dim=0, keepdim=True)
    rms = torch.sqrt(torch.mean(torch.square(audio)))
    if rms < target_rms:
        audio = audio * target_rms / rms
    if sr != target_sample_rate:
        resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
        audio = resampler(audio)
    audio = audio.to(device)
    # Chunk
    chunks = txtsplit(gen_text, 100, 150) # 100 chars preferred, 150 max
    results = []
    generated_mel_specs = []
    for chunk in progress.tqdm(chunks):
        # Prepare the text
        text_list = [ref_text + chunk]
        final_text_list = convert_char_to_pinyin(text_list)
    
        # Calculate duration
        ref_audio_len = audio.shape[-1] // hop_length
        # if fix_duration is not None:
        #     duration = int(fix_duration * target_sample_rate / hop_length)
        # else:
        zh_pause_punc = r"。,、;:?!"
        ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
        gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
        duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
    
        # inference
        gr.Info(f"Generating audio using {exp_name}")
        with torch.inference_mode():
            generated, _ = base_model.sample(
                cond=audio,
                text=final_text_list,
                duration=duration,
                steps=nfe_step,
                cfg_strength=cfg_strength,
                sway_sampling_coef=sway_sampling_coef,
            )
    
        generated = generated[:, ref_audio_len:, :]
        generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
        gr.Info("Running vocoder")
        vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
        generated_wave = vocos.decode(generated_mel_spec.cpu())
        if rms < target_rms:
            generated_wave = generated_wave * rms / target_rms
    
        # wav -> numpy
        generated_wave = generated_wave.squeeze().cpu().numpy()
        results.append(generated_wave)
    generated_wave = np.concatenate(results)
    if remove_silence:
        gr.Info("Removing audio silences... This may take a moment")
        non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
        non_silent_wave = np.array([])
        for interval in non_silent_intervals:
            start, end = interval
            non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
        generated_wave = non_silent_wave


    # spectogram
    # with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
    #     spectrogram_path = tmp_spectrogram.name
    #     save_spectrogram(generated_mel_spec[0].cpu().numpy(), spectrogram_path)

    return (target_sample_rate, generated_wave)

with gr.Blocks() as app:
    gr.Markdown("""
# E2/F5 TTS

This is an unofficial E2/F5 TTS demo. This demo supports the following TTS models:

* [E2-TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)

This demo is based on the [F5-TTS](https://github.com/SWivid/F5-TTS) codebase, which is based on an [unofficial E2-TTS implementation](https://github.com/lucidrains/e2-tts-pytorch).

The checkpoints support English and Chinese.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. If you're still running into issues, please open a [community Discussion](https://huggingface.co/spaces/mrfakename/E2-F5-TTS/discussions).

Long-form/batched inference + speech editing is coming soon!

**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
""")

    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate (longer text will use chunking)", lines=4)
    model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
    generate_btn = gr.Button("Synthesize", variant="primary")
    with gr.Accordion("Advanced Settings", open=False):
        ref_text_input = gr.Textbox(label="Reference Text", info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", lines=2)
        remove_silence = gr.Checkbox(label="Remove Silences", info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", value=True)
    
    audio_output = gr.Audio(label="Synthesized Audio")
    # spectrogram_output = gr.Image(label="Spectrogram")

    generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output])
    gr.Markdown("""
## Run Locally

Run this demo locally on CPU, CUDA, or MPS/Apple Silicon (requires macOS >= 14):

First, ensure `ffmpeg` is installed.

```bash
git clone https://huggingface.co/spaces/mrfakename/E2-F5-TTS
cd E2-F5-TTS
python -m pip install -r requirements.txt
python app_local.py
```

""")
    gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")


app.queue().launch()