Spaces:
Running
Running
File size: 15,222 Bytes
b4966ee 78db81b b4966ee 003d24d b4966ee ec6b925 003d24d ec6b925 003d24d 0d4db15 ec6b925 003d24d 78db81b 003d24d 0d4db15 003d24d 78db81b 0d4db15 78db81b 0d4db15 003d24d 0d4db15 78db81b b4966ee 003d24d b4966ee 003d24d 0d4db15 003d24d 0d4db15 003d24d 0d4db15 003d24d 0d4db15 003d24d 0d4db15 b4966ee 0d4db15 b4966ee 0d4db15 003d24d 0d4db15 bc83dc3 0d4db15 003d24d 0d4db15 78db81b 0d4db15 003d24d 0d4db15 bc83dc3 0d4db15 003d24d 0d4db15 003d24d 0d4db15 003d24d b4966ee 003d24d 0d4db15 003d24d b4966ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
path = f"https://huggingface.co/api/spaces"
TASKS = [
"BitextMining",
"Classification",
"Clustering",
"PairClassification",
"Reranking",
"Retrieval",
"STS",
"Summarization",
]
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification (en)",
"AmazonPolarityClassification",
"AmazonReviewsClassification (en)",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification (en)",
"MassiveScenarioClassification (en)",
"MTOPDomainClassification (en)",
"MTOPIntentClassification (en)",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
"ClimateFEVER",
"CQADupstackRetrieval",
"DBPedia",
"FEVER",
"FiQA2018",
"HotpotQA",
"MSMARCO",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17 (en-en)",
"STS22 (en)",
"STSBenchmark",
]
TASK_LIST_SUMMARIZATION = [
"SummEval",
]
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
TASK_TO_TASK_LIST = {}
def make_clickable_model(model_name):
# Remove user from model name
model_name_show = " ".join(model_name.split("/")[1:])
link = "https://huggingface.co/" + model_name
return (
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name_show}</a>'
)
TASK_TO_METRIC = {
"BitextMining": "f1",
"Clustering": "v_measure",
"Classification": "accuracy",
"PairClassification": "cos_sim_ap",
"Reranking": "map",
"Retrieval": "ndcg_at_10",
"STS": "cos_sim_spearman",
"Summarization": "cos_sim_spearman",
}
def get_mteb_data(tasks=["Clustering"], metric="v_measure", langs=[], cast_to_str=True, task_to_metric=TASK_TO_METRIC):
api = HfApi()
models = api.list_models(filter="mteb")
df_list = []
for model in models:
readme_path = hf_hub_download(model.modelId, filename="README.md")
meta = metadata_load(readme_path)
# meta['model-index'][0]["results"] is list of elements like:
# {
# "task": {"type": "Classification"},
# "dataset": {
# "type": "mteb/amazon_massive_intent",
# "name": "MTEB MassiveIntentClassification (nb)",
# "config": "nb",
# "split": "test",
# },
# "metrics": [
# {"type": "accuracy", "value": 39.81506388702084},
# {"type": "f1", "value": 38.809586587791664},
# ],
# },
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
#if langs is None:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
#else:
# Multilingual
# out = list(
# map(
# lambda x: {
# x["dataset"]["name"].replace("MTEB ", ""): round(
# list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2
# )
# },
# filter(
# lambda x: (x.get("task", {}).get("type", "") in tasks)
# and (x.get("dataset", {}).get("config", "") in ("default", *langs)),
# meta["model-index"][0]["results"],
# ),
# )
# )
out = {k: v for d in out for k, v in d.items()}
out["Model"] = make_clickable_model(model.modelId)
df_list.append(out)
df = pd.DataFrame(df_list)
# Put 'Model' column first
cols = sorted(list(df.columns))
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
# df.insert(1, "Average", df.mean(axis=1, skipna=False))
df.fillna("", inplace=True)
if cast_to_str:
return df.astype(str) # Cast to str as Gradio does not accept floats
return df
DATA_OVERALL = get_mteb_data(
tasks=[
"Classification",
"Clustering",
"PairClassification",
"Reranking",
"Retrieval",
"STS",
"Summarization",
],
langs=["en", "en-en"],
cast_to_str=False
)
DATA_OVERALL.insert(1, "Average", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
DATA_OVERALL.insert(2, "Classification Average", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
DATA_OVERALL.insert(3, "Clustering Average", DATA_OVERALL[TASK_LIST_CLUSTERING].mean(axis=1, skipna=False))
DATA_OVERALL.insert(4, "Pair Classification Average", DATA_OVERALL[TASK_LIST_PAIR_CLASSIFICATION].mean(axis=1, skipna=False))
DATA_OVERALL.insert(5, "Reranking Average", DATA_OVERALL[TASK_LIST_RERANKING].mean(axis=1, skipna=False))
DATA_OVERALL.insert(6, "Retrieval Average", DATA_OVERALL[TASK_LIST_RETRIEVAL].mean(axis=1, skipna=False))
DATA_OVERALL.insert(7, "STS Average", DATA_OVERALL[TASK_LIST_STS].mean(axis=1, skipna=False))
DATA_OVERALL.insert(8, "Summarization Average", DATA_OVERALL[TASK_LIST_SUMMARIZATION].mean(axis=1, skipna=False))
DATA_OVERALL = DATA_OVERALL.round(2).astype(str)
DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
DATA_RERANKING = DATA_OVERALL[["Model"] + TASK_LIST_RERANKING]
DATA_RETRIEVAL = DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL]
DATA_STS_EN = DATA_OVERALL[["Model"] + TASK_LIST_STS]
DATA_SUMMARIZATION = DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION]
DATA_OVERALL = DATA_OVERALL[["Model", "Average", "Classification Average", "Clustering Average", "Pair Classification Average", "Reranking Average", "Retrieval Average", "STS Average", "Summarization Average"]]
block = gr.Blocks()
with block:
gr.Markdown(
"""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>"""
)
with gr.Tabs():
with gr.TabItem("Overall"):
with gr.Row():
gr.Markdown("""Average Scores""")
with gr.Row():
data_overall = gr.components.Dataframe(
DATA_OVERALL,
datatype="markdown",
type="pandas",
col_count=(len(DATA_OVERALL.columns), "fixed"),
wrap=True,
)
with gr.TabItem("Classification"):
with gr.TabItem("English"):
with gr.Row():
gr.Markdown("""Leaderboard for Classification""")
with gr.Row():
data_classification_en = gr.components.Dataframe(
DATA_CLASSIFICATION_EN,
datatype="markdown",
type="pandas",
col_count=(len(DATA_CLASSIFICATION_EN.columns), "fixed"),
)
with gr.Row():
data_run = gr.Button("Refresh")
task_classification_en = gr.Variable(value="Classification")
metric_classification_en = gr.Variable(value="accuracy")
lang_classification_en = gr.Variable(value=["en"])
data_run.click(
get_mteb_data,
inputs=[
task_classification_en,
metric_classification_en,
lang_classification_en,
],
outputs=data_classification_en,
)
with gr.TabItem("Multilingual"):
with gr.Row():
gr.Markdown("""Multilingual Classification""")
with gr.Row():
data_classification = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_classification = gr.Variable(value="Classification")
metric_classification = gr.Variable(value="accuracy")
data_run.click(
get_mteb_data,
inputs=[task_classification, metric_classification],
outputs=data_classification,
)
with gr.TabItem("Clustering"):
with gr.Row():
gr.Markdown("""Leaderboard for Clustering""")
with gr.Row():
data_clustering = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_clustering = gr.Variable(value="Clustering")
metric_clustering = gr.Variable(value="v_measure")
data_run.click(
get_mteb_data,
inputs=[task_clustering, metric_clustering],
outputs=data_clustering,
)
with gr.TabItem("Retrieval"):
with gr.Row():
gr.Markdown("""Leaderboard for Retrieval""")
with gr.Row():
data_retrieval = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_retrieval = gr.Variable(value="Retrieval")
metric_retrieval = gr.Variable(value="ndcg_at_10")
data_run.click(
get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval
)
with gr.TabItem("Reranking"):
with gr.Row():
gr.Markdown("""Leaderboard for Reranking""")
with gr.Row():
data_reranking = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
# col_count=(12, "fixed"),
)
with gr.Row():
data_run = gr.Button("Refresh")
task_reranking = gr.Variable(value="Reranking")
metric_reranking = gr.Variable(value="map")
data_run.click(
get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking
)
with gr.TabItem("STS"):
with gr.TabItem("English"):
with gr.Row():
gr.Markdown("""Leaderboard for STS""")
with gr.Row():
data_sts_en = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
)
with gr.Row():
data_run_en = gr.Button("Refresh")
task_sts_en = gr.Variable(value="STS")
metric_sts_en = gr.Variable(value="cos_sim_spearman")
lang_sts_en = gr.Variable(value=["en", "en-en"])
data_run.click(
get_mteb_data,
inputs=[task_sts_en, metric_sts_en, lang_sts_en],
outputs=data_sts_en,
)
with gr.TabItem("Multilingual"):
with gr.Row():
gr.Markdown("""Leaderboard for STS""")
with gr.Row():
data_sts = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_sts = gr.Variable(value="STS")
metric_sts = gr.Variable(value="cos_sim_spearman")
data_run.click(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
with gr.TabItem("Summarization"):
with gr.Row():
gr.Markdown("""Leaderboard for Summarization""")
with gr.Row():
data_summarization = gr.components.Dataframe(
datatype=["markdown"] * 500,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_summarization = gr.Variable(value="Summarization")
metric_summarization = gr.Variable(value="cos_sim_spearman")
data_run.click(
get_mteb_data,
inputs=[task_summarization, metric_summarization],
outputs=data_summarization,
)
# running the function on page load in addition to when the button is clicked
#block.load(
# get_mteb_data,
# inputs=[task_classification_en, metric_classification_en],
# outputs=data_classification_en,
# show_progress=False,
#)
block.load(
get_mteb_data,
inputs=[task_classification, metric_classification],
outputs=data_classification,
)
block.load(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
block.load(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
block.load(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
block.load(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
block.load(
get_mteb_data, inputs=[task_summarization, metric_summarization], outputs=data_summarization
)
block.launch()
|