Spaces:
Running
Running
import gradio as gr | |
import requests | |
import pandas as pd | |
from huggingface_hub.hf_api import SpaceInfo | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
path = f"https://huggingface.co/api/spaces" | |
def get_blocks_party_spaces(): | |
r = requests.get(path) | |
d = r.json() | |
spaces = [SpaceInfo(**x) for x in d] | |
blocks_spaces = {} | |
for i in range(0,len(spaces)): | |
if spaces[i].id.split('/')[0] == 'Gradio-Blocks' and hasattr(spaces[i], 'likes') and spaces[i].id != 'Gradio-Blocks/Leaderboard' and spaces[i].id != 'Gradio-Blocks/README': | |
blocks_spaces[spaces[i].id]=spaces[i].likes | |
df = pd.DataFrame( | |
[{"Spaces_Name": Spaces, "likes": likes} for Spaces,likes in blocks_spaces.items()]) | |
df = df.sort_values(by=['likes'],ascending=False) | |
return df | |
def make_clickable_model(model_name): | |
# remove user from model name | |
model_name_show = ' '.join(model_name.split('/')[1:]) | |
link = "https://huggingface.co/" + model_name | |
return f'<a target="_blank" href="{link}">{model_name_show}</a>' | |
def get_mteb_data(task="Clustering", metric="v_measure"): | |
api = HfApi() | |
models = api.list_models(filter="mteb") | |
df_list = [] | |
for model in models: | |
readme_path = hf_hub_download(model.modelId, filename="README.md") | |
meta = metadata_load(readme_path) | |
out = list( | |
map( | |
lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)}, | |
filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"]) | |
) | |
) | |
out = {k: v for d in out for k, v in d.items()} | |
# Does not work https://github.com/gradio-app/gradio/issues/2375 | |
# Turning it into HTML will make the formatting ugly | |
# make_clickable_model(model.modelId) | |
out["Model"] = model.modelId | |
df_list.append(out) | |
df = pd.DataFrame(df_list) | |
# Put Model in the beginning & sort the others | |
df = df[[df.columns[-1]] + sorted(df.columns[:-1])] | |
return df | |
block = gr.Blocks() | |
with block: | |
gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>""") | |
with gr.Tabs(): | |
with gr.TabItem("Blocks Party Leaderboard"): | |
with gr.Row(): | |
data = gr.components.Dataframe(type="pandas") | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data) | |
with gr.TabItem("Clustering"): | |
with gr.Row(): | |
gr.Markdown("""Leaderboard for Clustering""") | |
with gr.Row(): | |
data_clustering = gr.components.Dataframe(type="pandas") | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
task = gr.Variable(value="Clustering") | |
metric = gr.Variable(value="v_measure") | |
data_run.click(get_mteb_data, inputs=[task, metric], outputs=data_clustering) | |
with gr.TabItem("Blocks Party Leaderboard2"): | |
with gr.Row(): | |
data = gr.components.Dataframe(type="pandas") | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data) | |
# running the function on page load in addition to when the button is clicked | |
block.load(get_mteb_data, inputs=[task, metric], outputs=data_clustering) | |
block.load(get_blocks_party_spaces, inputs=None, outputs=data) | |
block.launch() | |