File size: 6,712 Bytes
069c5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import imageio
import numpy as np
from typing import Union

import torch
import torchvision
import torch.distributed as dist

from safetensors import safe_open
from tqdm import tqdm
from einops import rearrange
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, convert_motion_lora_ckpt_to_diffusers


def zero_rank_print(s):
    if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
    return ddim_latents

def load_weights(
    animation_pipeline,
    # motion module
    motion_module_path         = "",
    motion_module_lora_configs = [],
    # image layers
    dreambooth_model_path = "",
    lora_model_path       = "",
    lora_alpha            = 0.8,
):
    # 1.1 motion module
    unet_state_dict = {}
    if motion_module_path != "":
        print(f"load motion module from {motion_module_path}")
        motion_module_state_dict = torch.load(motion_module_path, map_location="cpu")
        motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict
        unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name})
    
    missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False)
    assert len(unexpected) == 0
    del unet_state_dict

    if dreambooth_model_path != "":
        print(f"load dreambooth model from {dreambooth_model_path}")
        if dreambooth_model_path.endswith(".safetensors"):
            dreambooth_state_dict = {}
            with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f:
                for key in f.keys():
                    dreambooth_state_dict[key] = f.get_tensor(key)
        elif dreambooth_model_path.endswith(".ckpt"):
            dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu")
            
        # 1. vae
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config)
        animation_pipeline.vae.load_state_dict(converted_vae_checkpoint)
        # 2. unet
        converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config)
        animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
        # 3. text_model
        animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
        del dreambooth_state_dict
        
    if lora_model_path != "":
        print(f"load lora model from {lora_model_path}")
        assert lora_model_path.endswith(".safetensors")
        lora_state_dict = {}
        with safe_open(lora_model_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                lora_state_dict[key] = f.get_tensor(key)
                
        animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
        del lora_state_dict


    for motion_module_lora_config in motion_module_lora_configs:
        path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
        print(f"load motion LoRA from {path}")

        motion_lora_state_dict = torch.load(path, map_location="cpu")
        motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict

        animation_pipeline = convert_motion_lora_ckpt_to_diffusers(animation_pipeline, motion_lora_state_dict, alpha)

    return animation_pipeline