File size: 4,664 Bytes
069c5f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.fft as fft
import math


def freq_mix_3d(x, noise, LPF):
    """
    Noise reinitialization.

    Args:
        x: diffused latent
        noise: randomly sampled noise
        LPF: low pass filter
    """
    # FFT
    x_freq = fft.fftn(x, dim=(-3, -2, -1))
    x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
    noise_freq = fft.fftn(noise, dim=(-3, -2, -1))
    noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1))

    # frequency mix
    HPF = 1 - LPF
    x_freq_low = x_freq * LPF
    noise_freq_high = noise_freq * HPF
    x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain

    # IFFT
    x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1))
    x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real

    return x_mixed


def get_freq_filter(shape, device, filter_type, n, d_s, d_t):
    """
    Form the frequency filter for noise reinitialization.

    Args:
        shape: shape of latent (B, C, T, H, W)
        filter_type: type of the freq filter
        n: (only for butterworth) order of the filter, larger n ~ ideal, smaller n ~ gaussian
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    if filter_type == "gaussian":
        return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == "ideal":
        return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == "box":
        return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == "butterworth":
        return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device)
    else:
        raise NotImplementedError

def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the gaussian low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[..., t,h,w] = math.exp(-1/(2*d_s**2) * d_square)
    return mask


def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25):
    """
    Compute the butterworth low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        n: order of the filter, larger n ~ ideal, smaller n ~ gaussian
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[..., t,h,w] = 1 / (1 + (d_square / d_s**2)**n)
    return mask


def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the ideal low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[..., t,h,w] =  1 if d_square <= d_s*2 else 0
    return mask


def box_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the ideal low pass filter mask (approximated version).

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask

    threshold_s = round(int(H // 2) * d_s)
    threshold_t = round(T // 2 * d_t)

    cframe, crow, ccol = T // 2, H // 2, W //2
    mask[..., cframe - threshold_t:cframe + threshold_t, crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0

    return mask