Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,16 @@ import json
|
|
6 |
import base64
|
7 |
import os
|
8 |
from io import BytesIO
|
|
|
9 |
import PIL
|
|
|
10 |
from PIL.ExifTags import TAGS
|
11 |
import html
|
12 |
import re
|
|
|
13 |
|
|
|
|
|
14 |
|
15 |
class Prodia:
|
16 |
def __init__(self, api_key, base=None):
|
@@ -18,19 +23,19 @@ class Prodia:
|
|
18 |
self.headers = {
|
19 |
"X-Prodia-Key": api_key
|
20 |
}
|
21 |
-
|
22 |
def generate(self, params):
|
23 |
response = self._post(f"{self.base}/sd/generate", params)
|
24 |
return response.json()
|
25 |
-
|
26 |
def transform(self, params):
|
27 |
response = self._post(f"{self.base}/sd/transform", params)
|
28 |
return response.json()
|
29 |
-
|
30 |
def controlnet(self, params):
|
31 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
32 |
return response.json()
|
33 |
-
|
34 |
def get_job(self, job_id):
|
35 |
response = self._get(f"{self.base}/job/{job_id}")
|
36 |
return response.json()
|
@@ -75,12 +80,13 @@ def image_to_base64(image_path):
|
|
75 |
# Convert the image to bytes
|
76 |
buffered = BytesIO()
|
77 |
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
78 |
-
|
79 |
# Encode the bytes to base64
|
80 |
img_str = base64.b64encode(buffered.getvalue())
|
81 |
|
82 |
return img_str.decode('utf-8') # Convert bytes to string
|
83 |
|
|
|
84 |
def remove_id_and_ext(text):
|
85 |
text = re.sub(r'\[.*\]$', '', text)
|
86 |
extension = text[-12:].strip()
|
@@ -90,6 +96,37 @@ def remove_id_and_ext(text):
|
|
90 |
text = text[:-4]
|
91 |
return text
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def get_data(text):
|
94 |
results = {}
|
95 |
patterns = {
|
@@ -97,11 +134,11 @@ def get_data(text):
|
|
97 |
'negative_prompt': r'Negative prompt: (.*)',
|
98 |
'steps': r'Steps: (\d+),',
|
99 |
'seed': r'Seed: (\d+),',
|
100 |
-
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
101 |
'model': r'Model:\s*([^\s,]+)',
|
102 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
103 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
104 |
-
|
105 |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
106 |
match = re.search(patterns[key], text)
|
107 |
if match:
|
@@ -117,23 +154,24 @@ def get_data(text):
|
|
117 |
results['h'] = None
|
118 |
return results
|
119 |
|
|
|
120 |
def send_to_txt2img(image):
|
121 |
-
|
122 |
result = {tabs: gr.Tabs.update(selected="t2i")}
|
123 |
|
124 |
try:
|
125 |
text = image.info['parameters']
|
126 |
data = get_data(text)
|
127 |
result[prompt] = gr.update(value=data['prompt'])
|
128 |
-
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
|
|
|
129 |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
130 |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
131 |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
132 |
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
|
133 |
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
|
134 |
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
|
135 |
-
if model in model_names:
|
136 |
-
result[model] = gr.update(value=model_names[model])
|
137 |
else:
|
138 |
result[model] = gr.update()
|
139 |
return result
|
@@ -153,7 +191,6 @@ def send_to_txt2img(image):
|
|
153 |
return result
|
154 |
|
155 |
|
156 |
-
|
157 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
158 |
model_list = prodia_client.list_models()
|
159 |
model_names = {}
|
@@ -162,8 +199,12 @@ for model_name in model_list:
|
|
162 |
name_without_ext = remove_id_and_ext(model_name)
|
163 |
model_names[name_without_ext] = model_name
|
164 |
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
"prompt": prompt,
|
168 |
"negative_prompt": negative_prompt,
|
169 |
"model": model,
|
@@ -173,11 +214,47 @@ def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width,
|
|
173 |
"width": width,
|
174 |
"height": height,
|
175 |
"seed": seed
|
176 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
|
183 |
css = """
|
@@ -187,82 +264,82 @@ css = """
|
|
187 |
"""
|
188 |
|
189 |
with gr.Blocks(css=css) as demo:
|
190 |
-
|
191 |
-
|
192 |
with gr.Row():
|
193 |
with gr.Column(scale=6):
|
194 |
-
model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
195 |
-
|
|
|
196 |
with gr.Column(scale=1):
|
197 |
-
gr.Markdown(elem_id="powered-by-prodia",
|
|
|
198 |
|
199 |
with gr.Tabs() as tabs:
|
200 |
with gr.Tab("txt2img", id='t2i'):
|
201 |
with gr.Row():
|
202 |
with gr.Column(scale=6, min_width=600):
|
203 |
-
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
204 |
-
|
|
|
|
|
205 |
with gr.Column():
|
206 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
207 |
-
|
208 |
with gr.Row():
|
209 |
with gr.Column(scale=3):
|
210 |
with gr.Tab("Generation"):
|
211 |
with gr.Row():
|
212 |
with gr.Column(scale=1):
|
213 |
-
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
235 |
with gr.Column(scale=1):
|
236 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
|
237 |
-
|
238 |
with gr.Row():
|
239 |
with gr.Column(scale=1):
|
240 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
241 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
242 |
-
|
243 |
with gr.Column(scale=1):
|
244 |
-
batch_size = gr.Slider(label="Batch Size",
|
245 |
-
batch_count = gr.Slider(label="Batch Count",
|
246 |
-
|
247 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
248 |
seed = gr.Number(label="Seed", value=-1)
|
249 |
-
|
250 |
-
|
251 |
with gr.Column(scale=2):
|
252 |
-
image_output = gr.
|
253 |
-
|
254 |
-
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
|
255 |
-
|
256 |
with gr.Tab("PNG Info"):
|
257 |
def plaintext_to_html(text, classname=None):
|
258 |
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
259 |
-
|
260 |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
261 |
-
|
262 |
-
|
263 |
def get_exif_data(image):
|
264 |
items = image.info
|
265 |
-
|
266 |
info = ''
|
267 |
for key, text in items.items():
|
268 |
info += f"""
|
@@ -270,25 +347,32 @@ with gr.Blocks(css=css) as demo:
|
|
270 |
<p><b>{plaintext_to_html(str(key))}</b></p>
|
271 |
<p>{plaintext_to_html(str(text))}</p>
|
272 |
</div>
|
273 |
-
""".strip()+"\n"
|
274 |
-
|
275 |
if len(info) == 0:
|
276 |
message = "Nothing found in the image."
|
277 |
info = f"<div><p>{message}<p></div>"
|
278 |
-
|
279 |
return info
|
280 |
-
|
281 |
with gr.Row():
|
282 |
with gr.Column():
|
283 |
image_input = gr.Image(type="pil")
|
284 |
-
|
285 |
with gr.Column():
|
286 |
exif_output = gr.HTML(label="EXIF Data")
|
287 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
demo.queue(concurrency_count=32)
|
294 |
-
demo.launch()
|
|
|
6 |
import base64
|
7 |
import os
|
8 |
from io import BytesIO
|
9 |
+
import math
|
10 |
import PIL
|
11 |
+
from PIL import Image
|
12 |
from PIL.ExifTags import TAGS
|
13 |
import html
|
14 |
import re
|
15 |
+
from threading import Thread
|
16 |
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
load_dotenv()
|
19 |
|
20 |
class Prodia:
|
21 |
def __init__(self, api_key, base=None):
|
|
|
23 |
self.headers = {
|
24 |
"X-Prodia-Key": api_key
|
25 |
}
|
26 |
+
|
27 |
def generate(self, params):
|
28 |
response = self._post(f"{self.base}/sd/generate", params)
|
29 |
return response.json()
|
30 |
+
|
31 |
def transform(self, params):
|
32 |
response = self._post(f"{self.base}/sd/transform", params)
|
33 |
return response.json()
|
34 |
+
|
35 |
def controlnet(self, params):
|
36 |
response = self._post(f"{self.base}/sd/controlnet", params)
|
37 |
return response.json()
|
38 |
+
|
39 |
def get_job(self, job_id):
|
40 |
response = self._get(f"{self.base}/job/{job_id}")
|
41 |
return response.json()
|
|
|
80 |
# Convert the image to bytes
|
81 |
buffered = BytesIO()
|
82 |
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
83 |
+
|
84 |
# Encode the bytes to base64
|
85 |
img_str = base64.b64encode(buffered.getvalue())
|
86 |
|
87 |
return img_str.decode('utf-8') # Convert bytes to string
|
88 |
|
89 |
+
|
90 |
def remove_id_and_ext(text):
|
91 |
text = re.sub(r'\[.*\]$', '', text)
|
92 |
extension = text[-12:].strip()
|
|
|
96 |
text = text[:-4]
|
97 |
return text
|
98 |
|
99 |
+
|
100 |
+
def create_grid(image_urls):
|
101 |
+
# Download first image to get size
|
102 |
+
response = requests.get(image_urls[0])
|
103 |
+
img_data = response.content
|
104 |
+
img = Image.open(BytesIO(img_data))
|
105 |
+
w, h = img.size
|
106 |
+
|
107 |
+
# Calculate rows and cols
|
108 |
+
num_images = len(image_urls)
|
109 |
+
num_cols = min(num_images, 3)
|
110 |
+
num_rows = math.ceil(num_images / num_cols)
|
111 |
+
|
112 |
+
# Create new rgba image
|
113 |
+
grid_w = num_cols * w
|
114 |
+
grid_h = num_rows * h
|
115 |
+
grid = Image.new('RGBA', (grid_w, grid_h), (0, 0, 0, 0))
|
116 |
+
|
117 |
+
# Download images and paste into grid
|
118 |
+
for index, img_url in enumerate(image_urls):
|
119 |
+
response = requests.get(img_url)
|
120 |
+
img_data = response.content
|
121 |
+
img = Image.open(BytesIO(img_data))
|
122 |
+
|
123 |
+
row = index // num_cols
|
124 |
+
col = index % num_cols
|
125 |
+
grid.paste(img, (col * w, row * h))
|
126 |
+
|
127 |
+
# Save image
|
128 |
+
return grid
|
129 |
+
|
130 |
def get_data(text):
|
131 |
results = {}
|
132 |
patterns = {
|
|
|
134 |
'negative_prompt': r'Negative prompt: (.*)',
|
135 |
'steps': r'Steps: (\d+),',
|
136 |
'seed': r'Seed: (\d+),',
|
137 |
+
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
138 |
'model': r'Model:\s*([^\s,]+)',
|
139 |
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
140 |
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
141 |
+
}
|
142 |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
143 |
match = re.search(patterns[key], text)
|
144 |
if match:
|
|
|
154 |
results['h'] = None
|
155 |
return results
|
156 |
|
157 |
+
|
158 |
def send_to_txt2img(image):
|
|
|
159 |
result = {tabs: gr.Tabs.update(selected="t2i")}
|
160 |
|
161 |
try:
|
162 |
text = image.info['parameters']
|
163 |
data = get_data(text)
|
164 |
result[prompt] = gr.update(value=data['prompt'])
|
165 |
+
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data[
|
166 |
+
'negative_prompt'] is not None else gr.update()
|
167 |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
168 |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
169 |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
170 |
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
|
171 |
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
|
172 |
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
|
173 |
+
if data['model'] in model_names:
|
174 |
+
result[model] = gr.update(value=model_names[data['model']])
|
175 |
else:
|
176 |
result[model] = gr.update()
|
177 |
return result
|
|
|
191 |
return result
|
192 |
|
193 |
|
|
|
194 |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
195 |
model_list = prodia_client.list_models()
|
196 |
model_names = {}
|
|
|
199 |
name_without_ext = remove_id_and_ext(model_name)
|
200 |
model_names[name_without_ext] = model_name
|
201 |
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_size, batch_count, gallery):
|
206 |
+
|
207 |
+
data = {
|
208 |
"prompt": prompt,
|
209 |
"negative_prompt": negative_prompt,
|
210 |
"model": model,
|
|
|
214 |
"width": width,
|
215 |
"height": height,
|
216 |
"seed": seed
|
217 |
+
}
|
218 |
+
|
219 |
+
total_images = []
|
220 |
+
count_threads = []
|
221 |
+
|
222 |
+
def generate_one_grid():
|
223 |
+
grid_images = []
|
224 |
+
size_threads = []
|
225 |
+
|
226 |
+
def generate_one_image():
|
227 |
+
|
228 |
+
result = prodia_client.generate(data)
|
229 |
+
|
230 |
+
job = prodia_client.wait(result)
|
231 |
+
|
232 |
+
grid_images.append(job['imageUrl'])
|
233 |
|
234 |
+
for y in range(batch_size):
|
235 |
+
t = Thread(target=generate_one_image)
|
236 |
+
size_threads.append(t)
|
237 |
+
t.start()
|
238 |
|
239 |
+
for t in size_threads:
|
240 |
+
t.join()
|
241 |
+
|
242 |
+
total_images.append(create_grid(grid_images))
|
243 |
+
|
244 |
+
for x in range(batch_count):
|
245 |
+
t = Thread(target=generate_one_grid)
|
246 |
+
count_threads.append(t)
|
247 |
+
t.start()
|
248 |
+
|
249 |
+
for t in count_threads:
|
250 |
+
t.join()
|
251 |
+
|
252 |
+
new_images_list = [img['name'] for img in gallery]
|
253 |
+
|
254 |
+
for image in total_images:
|
255 |
+
new_images_list.insert(0, image)
|
256 |
+
|
257 |
+
return {image_output: total_images, gallery_obj: new_images_list}
|
258 |
|
259 |
|
260 |
css = """
|
|
|
264 |
"""
|
265 |
|
266 |
with gr.Blocks(css=css) as demo:
|
|
|
|
|
267 |
with gr.Row():
|
268 |
with gr.Column(scale=6):
|
269 |
+
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True,
|
270 |
+
label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
|
271 |
+
|
272 |
with gr.Column(scale=1):
|
273 |
+
gr.Markdown(elem_id="powered-by-prodia",
|
274 |
+
value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br> For more features and faster gen times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide)")
|
275 |
|
276 |
with gr.Tabs() as tabs:
|
277 |
with gr.Tab("txt2img", id='t2i'):
|
278 |
with gr.Row():
|
279 |
with gr.Column(scale=6, min_width=600):
|
280 |
+
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
|
281 |
+
placeholder="Prompt", show_label=False, lines=3)
|
282 |
+
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3,
|
283 |
+
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
|
284 |
with gr.Column():
|
285 |
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
286 |
+
|
287 |
with gr.Row():
|
288 |
with gr.Column(scale=3):
|
289 |
with gr.Tab("Generation"):
|
290 |
with gr.Row():
|
291 |
with gr.Column(scale=1):
|
292 |
+
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method",
|
293 |
+
choices=[
|
294 |
+
"Euler",
|
295 |
+
"Euler a",
|
296 |
+
"LMS",
|
297 |
+
"Heun",
|
298 |
+
"DPM2",
|
299 |
+
"DPM2 a",
|
300 |
+
"DPM++ 2S a",
|
301 |
+
"DPM++ 2M",
|
302 |
+
"DPM++ SDE",
|
303 |
+
"DPM fast",
|
304 |
+
"DPM adaptive",
|
305 |
+
"LMS Karras",
|
306 |
+
"DPM2 Karras",
|
307 |
+
"DPM2 a Karras",
|
308 |
+
"DPM++ 2S a Karras",
|
309 |
+
"DPM++ 2M Karras",
|
310 |
+
"DPM++ SDE Karras",
|
311 |
+
"DDIM",
|
312 |
+
"PLMS",
|
313 |
+
])
|
314 |
+
|
315 |
with gr.Column(scale=1):
|
316 |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
|
317 |
+
|
318 |
with gr.Row():
|
319 |
with gr.Column(scale=1):
|
320 |
width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
|
321 |
height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
|
322 |
+
|
323 |
with gr.Column(scale=1):
|
324 |
+
batch_size = gr.Slider(label="Batch Size", minimum=1, maximum=9, value=1, step=1)
|
325 |
+
batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=100, value=1, step=1)
|
326 |
+
|
327 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
328 |
seed = gr.Number(label="Seed", value=-1)
|
329 |
+
|
|
|
330 |
with gr.Column(scale=2):
|
331 |
+
image_output = gr.Gallery(value=["https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png"], preview=True)
|
332 |
+
|
|
|
|
|
333 |
with gr.Tab("PNG Info"):
|
334 |
def plaintext_to_html(text, classname=None):
|
335 |
content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
|
336 |
+
|
337 |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
|
338 |
+
|
339 |
+
|
340 |
def get_exif_data(image):
|
341 |
items = image.info
|
342 |
+
|
343 |
info = ''
|
344 |
for key, text in items.items():
|
345 |
info += f"""
|
|
|
347 |
<p><b>{plaintext_to_html(str(key))}</b></p>
|
348 |
<p>{plaintext_to_html(str(text))}</p>
|
349 |
</div>
|
350 |
+
""".strip() + "\n"
|
351 |
+
|
352 |
if len(info) == 0:
|
353 |
message = "Nothing found in the image."
|
354 |
info = f"<div><p>{message}<p></div>"
|
355 |
+
|
356 |
return info
|
357 |
+
|
358 |
with gr.Row():
|
359 |
with gr.Column():
|
360 |
image_input = gr.Image(type="pil")
|
361 |
+
|
362 |
with gr.Column():
|
363 |
exif_output = gr.HTML(label="EXIF Data")
|
364 |
send_to_txt2img_btn = gr.Button("Send to txt2img")
|
365 |
+
|
366 |
+
with gr.Tab("Gallery"):
|
367 |
+
gallery_obj = gr.Gallery(height=1000, columns=5)
|
368 |
+
|
369 |
+
text_button.click(flip_text,
|
370 |
+
inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, batch_size, batch_count,
|
371 |
+
gallery_obj], outputs=[image_output, gallery_obj])
|
372 |
+
image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
|
373 |
+
send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input],
|
374 |
+
outputs=[tabs, prompt, negative_prompt, steps, seed,
|
375 |
+
model, sampler, width, height, cfg_scale])
|
376 |
|
377 |
demo.queue(concurrency_count=32)
|
378 |
+
demo.launch()
|