Timmyafolami
commited on
New update.
Browse filesEnabled detecting a full map image.
- Weed_Detector.py +183 -108
Weed_Detector.py
CHANGED
@@ -1,108 +1,183 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import zipfile
|
4 |
-
import numpy as np
|
5 |
-
import streamlit as st
|
6 |
-
from io import BytesIO
|
7 |
-
from PIL import Image
|
8 |
-
from ultralytics import YOLO
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import zipfile
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image
|
8 |
+
from ultralytics import YOLO
|
9 |
+
from shapely.geometry import Polygon
|
10 |
+
import shapefile
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
from utils import create_shapefile_with_latlon
|
14 |
+
|
15 |
+
# Increase the limit for PIL's decompression bomb protection
|
16 |
+
Image.MAX_IMAGE_PIXELS = None
|
17 |
+
|
18 |
+
# Define paths
|
19 |
+
path_to_store_bounding_boxes = 'detect/'
|
20 |
+
path_to_save_shapefile = 'weed_detections.shp'
|
21 |
+
slice_folder = 'slices/'
|
22 |
+
shapefile_folder = 'shapes/'
|
23 |
+
|
24 |
+
# Ensure the output directories exist
|
25 |
+
os.makedirs(path_to_store_bounding_boxes, exist_ok=True)
|
26 |
+
os.makedirs(slice_folder, exist_ok=True)
|
27 |
+
os.makedirs(shapefile_folder, exist_ok=True)
|
28 |
+
|
29 |
+
# Loading a custom model
|
30 |
+
model = YOLO('new_yolov8_best.pt')
|
31 |
+
|
32 |
+
# Mapping of class labels to readable names (assuming 'weeds' is class 1)
|
33 |
+
class_names = ["citrus area", "trees", "weeds", "weeds and trees"]
|
34 |
+
|
35 |
+
# Streamlit UI
|
36 |
+
st.title("Weed Detection and Shapefile Creation")
|
37 |
+
|
38 |
+
# Input coordinates for image corners
|
39 |
+
st.sidebar.header("Image Coordinates")
|
40 |
+
top_left = st.sidebar.text_input("Top Left (lon, lat)", value="-48.8877415, -20.585013")
|
41 |
+
top_right = st.sidebar.text_input("Top Right (lon, lat)", value="-48.8819718, -20.585013")
|
42 |
+
bottom_right = st.sidebar.text_input("Bottom Right (lon, lat)", value="-48.8819718, -20.5968754")
|
43 |
+
bottom_left = st.sidebar.text_input("Bottom Left (lon, lat)", value="-48.8877415, -20.5968754")
|
44 |
+
|
45 |
+
# Convert input coordinates to tuples
|
46 |
+
image_coords = [
|
47 |
+
tuple(map(float, top_left.split(','))),
|
48 |
+
tuple(map(float, top_right.split(','))),
|
49 |
+
tuple(map(float, bottom_right.split(','))),
|
50 |
+
tuple(map(float, bottom_left.split(',')))
|
51 |
+
]
|
52 |
+
|
53 |
+
# Upload image
|
54 |
+
uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
55 |
+
|
56 |
+
def calculate_new_coordinates(original_coords, start_x, start_y, end_x, end_y, img_width, img_height):
|
57 |
+
lon_step = (original_coords[1][0] - original_coords[0][0]) / img_width
|
58 |
+
lat_step = (original_coords[0][1] - original_coords[3][1]) / img_height
|
59 |
+
|
60 |
+
new_top_left = (original_coords[0][0] + start_x * lon_step, original_coords[0][1] - start_y * lat_step)
|
61 |
+
new_top_right = (original_coords[0][0] + end_x * lon_step, original_coords[0][1] - start_y * lat_step)
|
62 |
+
new_bottom_right = (original_coords[0][0] + end_x * lon_step, original_coords[0][1] - end_y * lat_step)
|
63 |
+
new_bottom_left = (original_coords[0][0] + start_x * lon_step, original_coords[0][1] - end_y * lat_step)
|
64 |
+
|
65 |
+
return [new_top_left, new_top_right, new_bottom_right, new_bottom_left]
|
66 |
+
|
67 |
+
def slice_image_and_coordinates(image_path, original_coords, slice_width=3000, slice_height=3000, output_folder='slices'):
|
68 |
+
os.makedirs(output_folder, exist_ok=True)
|
69 |
+
img = Image.open(image_path)
|
70 |
+
img_width, img_height = img.size
|
71 |
+
|
72 |
+
slice_coords = {}
|
73 |
+
slice_id = 0
|
74 |
+
|
75 |
+
num_slices_x = math.ceil(img_width / slice_width)
|
76 |
+
num_slices_y = math.ceil(img_height / slice_height)
|
77 |
+
|
78 |
+
for i in range(num_slices_y):
|
79 |
+
for j in range(num_slices_x):
|
80 |
+
start_x = j * slice_width
|
81 |
+
end_x = min(start_x + slice_width, img_width)
|
82 |
+
start_y = i * slice_height
|
83 |
+
end_y = min(start_y + slice_height, img_height)
|
84 |
+
|
85 |
+
box = (start_x, start_y, end_x, end_y)
|
86 |
+
cut_img = img.crop(box)
|
87 |
+
|
88 |
+
slice_filename = f'slice_{slice_id}.png'
|
89 |
+
cut_img.save(os.path.join(output_folder, slice_filename))
|
90 |
+
|
91 |
+
new_coords = calculate_new_coordinates(original_coords, start_x, start_y, end_x, end_y, img_width, img_height)
|
92 |
+
slice_coords[slice_filename] = new_coords
|
93 |
+
|
94 |
+
slice_id += 1
|
95 |
+
|
96 |
+
with open(os.path.join(output_folder, 'coordinates.json'), 'w') as json_file:
|
97 |
+
json.dump(slice_coords, json_file, indent=4)
|
98 |
+
|
99 |
+
return slice_coords
|
100 |
+
|
101 |
+
def convert_pixel_to_latlon(x, y, image_width, image_height, image_coords):
|
102 |
+
top_left, top_right, bottom_right, bottom_left = image_coords
|
103 |
+
|
104 |
+
lon_top = top_left[0] + (top_right[0] - top_left[0]) * (x / image_width)
|
105 |
+
lon_bottom = bottom_left[0] + (bottom_right[0] - bottom_left[0]) * (x / image_width)
|
106 |
+
lat_left = top_left[1] + (bottom_left[1] - top_left[1]) * (y / image_height)
|
107 |
+
lat_right = top_right[1] + (bottom_right[1] - top_right[1]) * (y / image_height)
|
108 |
+
|
109 |
+
lon = lon_top + (lon_bottom - lon_top) * (y / image_height)
|
110 |
+
lat = lat_left + (lat_right - lat_left) * (x / image_width)
|
111 |
+
|
112 |
+
return lon, lat
|
113 |
+
|
114 |
+
if uploaded_image is not None:
|
115 |
+
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
|
116 |
+
temp_image_path = "temp_uploaded_image.png"
|
117 |
+
image = Image.open(uploaded_image)
|
118 |
+
image.save(temp_image_path)
|
119 |
+
|
120 |
+
# Slice the image and save slices with their coordinates
|
121 |
+
slice_coords = slice_image_and_coordinates(temp_image_path, image_coords, slice_width=3000, slice_height=3000, output_folder=slice_folder)
|
122 |
+
|
123 |
+
if st.button("Detect Weeds"):
|
124 |
+
all_weed_bboxes = []
|
125 |
+
|
126 |
+
for slice_filename, coords in slice_coords.items():
|
127 |
+
slice_path = os.path.join(slice_folder, slice_filename)
|
128 |
+
image = cv2.imread(slice_path)
|
129 |
+
image_height, image_width, _ = image.shape
|
130 |
+
|
131 |
+
results = model.predict(slice_path, imgsz=640, conf=0.2, iou=0.4)
|
132 |
+
results = results[0]
|
133 |
+
|
134 |
+
weed_bboxes = []
|
135 |
+
|
136 |
+
for i, box in enumerate(results.boxes):
|
137 |
+
tensor = box.xyxy[0]
|
138 |
+
x1 = int(tensor[0].item())
|
139 |
+
y1 = int(tensor[1].item())
|
140 |
+
x2 = int(tensor[2].item())
|
141 |
+
y2 = int(tensor[3].item())
|
142 |
+
conf = box.conf[0].item()
|
143 |
+
label = box.cls[0].item()
|
144 |
+
|
145 |
+
if class_names[int(label)] == "weeds":
|
146 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 255), 3)
|
147 |
+
weed_bboxes.append((x1, y1, x2, y2))
|
148 |
+
|
149 |
+
if weed_bboxes:
|
150 |
+
create_shapefile_with_latlon(weed_bboxes, (image_width, image_height), coords, f'shapes/{slice_filename.replace(".png", ".shp")}')
|
151 |
+
all_weed_bboxes.extend(weed_bboxes)
|
152 |
+
|
153 |
+
cv2.imwrite(os.path.join(path_to_store_bounding_boxes, slice_filename), image)
|
154 |
+
|
155 |
+
final_shapefile_path = path_to_save_shapefile
|
156 |
+
w = shapefile.Writer(final_shapefile_path)
|
157 |
+
w.field('id', 'C')
|
158 |
+
|
159 |
+
for slice_filename, coords in slice_coords.items():
|
160 |
+
shape_path = os.path.join(shapefile_folder, slice_filename.replace('.png', '.shp'))
|
161 |
+
if os.path.exists(shape_path):
|
162 |
+
r = shapefile.Reader(shape_path)
|
163 |
+
for shape_rec in r.iterShapeRecords():
|
164 |
+
w.shape(shape_rec.shape)
|
165 |
+
w.record(shape_rec.record[0])
|
166 |
+
|
167 |
+
w.close()
|
168 |
+
|
169 |
+
zip_buffer = BytesIO()
|
170 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
|
171 |
+
for filename in ['weed_detections.shp', 'weed_detections.shx', 'weed_detections.dbf']:
|
172 |
+
zip_file.write(filename, os.path.basename(filename))
|
173 |
+
zip_buffer.seek(0)
|
174 |
+
|
175 |
+
st.download_button(
|
176 |
+
label="Download Shapefile ZIP",
|
177 |
+
data=zip_buffer,
|
178 |
+
file_name="weed_detections.zip",
|
179 |
+
mime="application/zip"
|
180 |
+
)
|
181 |
+
|
182 |
+
st.success("Weed detection completed and shapefile created successfully!")
|
183 |
+
|