Spaces:
Sleeping
Sleeping
Commit
·
2ac7b58
1
Parent(s):
8df8155
Upload AI Search.ipynb
Browse files- tmp/AI Search.ipynb +443 -0
tmp/AI Search.ipynb
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "8495bede-ab8f-416b-b5f2-6a76b1e63935",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stderr",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"D:\\Projects\\LLMs\\venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
16 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
17 |
+
]
|
18 |
+
}
|
19 |
+
],
|
20 |
+
"source": [
|
21 |
+
"from tqdm import tqdm\n",
|
22 |
+
"from sentence_transformers import SentenceTransformer, util"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 2,
|
28 |
+
"id": "2b8cae6d-547b-4018-9f68-b0a45284b4b4",
|
29 |
+
"metadata": {
|
30 |
+
"tags": []
|
31 |
+
},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"# model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2')\n",
|
35 |
+
"model = SentenceTransformer('TintinMeimei/menglang_yongtulv_aimatch_v1')"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 3,
|
41 |
+
"id": "d3907a6f-f8ab-40fe-8702-c8cb81e189c6",
|
42 |
+
"metadata": {
|
43 |
+
"tags": []
|
44 |
+
},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"def sim(text1, text2):\n",
|
48 |
+
" emb1 = model.encode(text1, convert_to_tensor=True)\n",
|
49 |
+
" emb2 = model.encode(text2, convert_to_tensor=True)\n",
|
50 |
+
" score = util.cos_sim(emb1, emb2)\n",
|
51 |
+
" return score"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 24,
|
57 |
+
"id": "3cec9f05-4ea9-46f8-a393-950c67a0150a",
|
58 |
+
"metadata": {
|
59 |
+
"tags": []
|
60 |
+
},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"text1 = '挂机空调'\n",
|
64 |
+
"# text2 = '1.1.11 高效节能家用电器制造\\n包括节能型房间空调器、空调机组、电冰箱、电动洗衣机、平板电视机、电风扇等家用电器制造。房间空气调节器能效优于《房间空气调节器能效限定值及能效等级》(GB 12021.3)标准1级能效水平;转速可控型房间空气调节器能效优于《转速可控型房间空气调节器能效限定值及能效等级》(GB 21455)标准1级能效水平;多联式空调(热泵)机组能效比优于《多联式空调(热泵)机组能效限定值及能源效率等级》(GB 21454)标准1级能效水平;家用电冰箱能效优于《家用电冰箱耗电量限定值及能效等级》(GB 12021.2)标准1级能效水平;电动洗衣机能效优于《电动洗衣机能效水效限定值及等级》(GB 12021.4)标准1级能效水平;电饭煲能效优于《电饭锅能效限定值及能效等级》(GB 12021.6)标准1级能效水平;平板电视机能效优于《平板电视能效限定值及能效等级》(GB 24850)标准1级能效水平;交流电风扇能效优于《交流电风扇能效限定值及能效等级》(GB 12021.9)标准1级能效水平。其他高效节能家用电器能效均优于相应国家强制性标准1级能效水平。'\n",
|
65 |
+
"# text2 = '包括节能泵、节能型真空干燥设备、节能型真空炉等设备制造。清水离心泵能效指标优于《清水离心泵能效限定值及节能评价值》(GB 19762)标准中节能评价值水平;石油化工离心泵能效优于《石油化工离心泵能效限定值及能效等级》(GB 32284)标准中1级能效水平;潜水电泵能效优于《井用潜水电泵能效限定值及能效等级》(GB 32030)、《小型潜水电泵能效限定值及能效等级》(GB 32029)、《污水污物潜水电泵能效限定值及能效等级》(GB 32031)标准中1级能效水平。'\n",
|
66 |
+
"text2 = '退耕还林'"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 25,
|
72 |
+
"id": "d570bf57-2518-4306-a7ae-712e81199460",
|
73 |
+
"metadata": {
|
74 |
+
"tags": []
|
75 |
+
},
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"data": {
|
79 |
+
"text/plain": [
|
80 |
+
"tensor([[-0.5000]], device='cuda:0')"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"execution_count": 25,
|
84 |
+
"metadata": {},
|
85 |
+
"output_type": "execute_result"
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"source": [
|
89 |
+
"sim(text1, text2)"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "markdown",
|
94 |
+
"id": "040cc794-9bb0-4c22-986c-933ca55ee637",
|
95 |
+
"metadata": {},
|
96 |
+
"source": [
|
97 |
+
"### Process Data"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 6,
|
103 |
+
"id": "d46e4e74-f7c2-4339-b009-4ba77f1b2f9a",
|
104 |
+
"metadata": {
|
105 |
+
"tags": []
|
106 |
+
},
|
107 |
+
"outputs": [
|
108 |
+
{
|
109 |
+
"data": {
|
110 |
+
"text/html": [
|
111 |
+
"<div>\n",
|
112 |
+
"<style scoped>\n",
|
113 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
114 |
+
" vertical-align: middle;\n",
|
115 |
+
" }\n",
|
116 |
+
"\n",
|
117 |
+
" .dataframe tbody tr th {\n",
|
118 |
+
" vertical-align: top;\n",
|
119 |
+
" }\n",
|
120 |
+
"\n",
|
121 |
+
" .dataframe thead th {\n",
|
122 |
+
" text-align: right;\n",
|
123 |
+
" }\n",
|
124 |
+
"</style>\n",
|
125 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
126 |
+
" <thead>\n",
|
127 |
+
" <tr style=\"text-align: right;\">\n",
|
128 |
+
" <th></th>\n",
|
129 |
+
" <th>X1</th>\n",
|
130 |
+
" <th>X2</th>\n",
|
131 |
+
" <th>Y</th>\n",
|
132 |
+
" <th>Split</th>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" </thead>\n",
|
135 |
+
" <tbody>\n",
|
136 |
+
" <tr>\n",
|
137 |
+
" <th>0</th>\n",
|
138 |
+
" <td>中新制药厂空调末端送回风系统改造-询价公示</td>\n",
|
139 |
+
" <td>1.1.11 高效节能家用电器制造\\n包括节能型房间空调器、空调机组、电冰箱、电动洗衣机、平...</td>\n",
|
140 |
+
" <td>1</td>\n",
|
141 |
+
" <td>train</td>\n",
|
142 |
+
" </tr>\n",
|
143 |
+
" <tr>\n",
|
144 |
+
" <th>1</th>\n",
|
145 |
+
" <td>中新制药厂空调末端送回风系统改造-询价公示</td>\n",
|
146 |
+
" <td>1.5.1 锅炉(窑炉)节能改造和能效提升\\n包括燃煤锅炉“以大代小”,采用先进燃煤锅炉、节...</td>\n",
|
147 |
+
" <td>0</td>\n",
|
148 |
+
" <td>train</td>\n",
|
149 |
+
" </tr>\n",
|
150 |
+
" </tbody>\n",
|
151 |
+
"</table>\n",
|
152 |
+
"</div>"
|
153 |
+
],
|
154 |
+
"text/plain": [
|
155 |
+
" X1 X2 \\\n",
|
156 |
+
"0 中新制药厂空调末端送回风系统改造-询价公示 1.1.11 高效节能家用电器制造\\n包括节能型房间空调器、空调机组、电冰箱、电动洗衣机、平... \n",
|
157 |
+
"1 中新制药厂空调末端送回风系统改造-询价公示 1.5.1 锅炉(窑炉)节能改造和能效提升\\n包括燃煤锅炉“以大代小”,采用先进燃煤锅炉、节... \n",
|
158 |
+
"\n",
|
159 |
+
" Y Split \n",
|
160 |
+
"0 1 train \n",
|
161 |
+
"1 0 train "
|
162 |
+
]
|
163 |
+
},
|
164 |
+
"execution_count": 6,
|
165 |
+
"metadata": {},
|
166 |
+
"output_type": "execute_result"
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"import pandas as pd\n",
|
171 |
+
"\n",
|
172 |
+
"df_data = pd.read_excel('AI匹配算法样本.xlsx', sheet_name='Sheet1', dtype=str)\n",
|
173 |
+
"df_data.head(2)"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 7,
|
179 |
+
"id": "673ce0e0-2801-4bb3-8e5d-5c4aff3ac725",
|
180 |
+
"metadata": {
|
181 |
+
"tags": []
|
182 |
+
},
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"name": "stderr",
|
186 |
+
"output_type": "stream",
|
187 |
+
"text": [
|
188 |
+
"C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:1: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
|
189 |
+
" train_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='train']\n",
|
190 |
+
"C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:2: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
|
191 |
+
" eval_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='eval']\n",
|
192 |
+
"C:\\Users\\vermouth\\AppData\\Local\\Temp\\ipykernel_22160\\3257358016.py:3: FutureWarning: Using short name for 'orient' is deprecated. Only the options: ('dict', list, 'series', 'split', 'records', 'index') will be used in a future version. Use one of the above to silence this warning.\n",
|
193 |
+
" test_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='test']\n"
|
194 |
+
]
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"source": [
|
198 |
+
"train_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='train']\n",
|
199 |
+
"eval_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='eval']\n",
|
200 |
+
"test_data = [item for item in df_data.to_dict(orient='record') if item['Split']=='test']"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "markdown",
|
205 |
+
"id": "5037803d-980d-48a1-a61d-528bb9508ce0",
|
206 |
+
"metadata": {},
|
207 |
+
"source": [
|
208 |
+
"### Model 1 - Fine tune a Sentence Transformer"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 8,
|
214 |
+
"id": "773429e9-57ce-418f-ad44-3c35d1b31a74",
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"# from sentence_transformers import InputExample, losses\n",
|
219 |
+
"# from torch.utils.data import DataLoader\n",
|
220 |
+
"\n",
|
221 |
+
"# # Prepare data\n",
|
222 |
+
"# train_data_sbert = []\n",
|
223 |
+
"# eval_data_sbert = []\n",
|
224 |
+
"# test_data_sbert = []\n",
|
225 |
+
"\n",
|
226 |
+
"# for item in train_data:\n",
|
227 |
+
"# label = 1.0 if float(item.get('Y')) == 1 else -1.0\n",
|
228 |
+
"# train_data_sbert.append(InputExample(texts=[item.get('X1'), item.get('X2')], label=label))\n",
|
229 |
+
"# train_dataloader = DataLoader(train_data_sbert, shuffle=True, batch_size=2)\n",
|
230 |
+
"# train_loss = losses.CosineSimilarityLoss(model)"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 9,
|
236 |
+
"id": "ec1b68cb-bec3-4896-b196-ec31b1132ad1",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [],
|
239 |
+
"source": [
|
240 |
+
"# from sentence_transformers import evaluation\n",
|
241 |
+
"# evaluator = evaluation.EmbeddingSimilarityEvaluator([item.get('X1') for item in eval_data], [item.get('X2') for item in eval_data], [1.0 if float(item.get('Y'))==1 else -1.0 for item in eval_data])"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "code",
|
246 |
+
"execution_count": 10,
|
247 |
+
"id": "7c05c6ef-c5e7-416b-b797-9f8735ae5436",
|
248 |
+
"metadata": {},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=1, warmup_steps=100, evaluator=evaluator, evaluation_steps=500)"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"cell_type": "code",
|
256 |
+
"execution_count": 11,
|
257 |
+
"id": "7de1e5f0-4b83-4d34-8385-77cdaa0ef08f",
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"# model.save('./tmp_model')"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"id": "fdd686b1-c654-4135-8989-05f23c914afa",
|
267 |
+
"metadata": {
|
268 |
+
"tags": []
|
269 |
+
},
|
270 |
+
"source": [
|
271 |
+
"### Model 2 - No Fine Tune + Threshold Tuning"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": 12,
|
277 |
+
"id": "a0247889-577d-4a92-8c0f-9c923748df93",
|
278 |
+
"metadata": {
|
279 |
+
"tags": []
|
280 |
+
},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"def sim(text1, text2):\n",
|
284 |
+
" emb1 = model.encode(text1, convert_to_tensor=True)\n",
|
285 |
+
" emb2 = model.encode(text2, convert_to_tensor=True)\n",
|
286 |
+
" score = util.cos_sim(emb1, emb2)\n",
|
287 |
+
" return score\n",
|
288 |
+
"\n",
|
289 |
+
"def _acc_thres(scores, thres):\n",
|
290 |
+
" correct = 0\n",
|
291 |
+
" total = len(scores)\n",
|
292 |
+
" for score, truth in scores:\n",
|
293 |
+
" truth = float(truth)\n",
|
294 |
+
" pred = 1 if score >= thres else 0\n",
|
295 |
+
" if pred == truth:\n",
|
296 |
+
" correct += 1\n",
|
297 |
+
" return round(correct/total, 3)\n",
|
298 |
+
"\n",
|
299 |
+
"def model_train(train_data, eval_data):\n",
|
300 |
+
" score_train = []\n",
|
301 |
+
" score_eval = []\n",
|
302 |
+
" for item in tqdm(train_data):\n",
|
303 |
+
" score = sim(item['X1'], item['X2'])\n",
|
304 |
+
" score_train.append((score, item['Y']))\n",
|
305 |
+
" for item in tqdm(eval_data):\n",
|
306 |
+
" score = sim(item['X1'], item['X2'])\n",
|
307 |
+
" score_eval.append((score, item['Y']))\n",
|
308 |
+
" # find threshold that minize train error\n",
|
309 |
+
" score_train = sorted(score_train, reverse=True)\n",
|
310 |
+
" win_acc = -1\n",
|
311 |
+
" win_thres = -1\n",
|
312 |
+
" for thres in range(5, 100, 5):\n",
|
313 |
+
" thres = thres*0.01\n",
|
314 |
+
" acc = _acc_thres(score_train, thres)\n",
|
315 |
+
" if acc > win_acc:\n",
|
316 |
+
" win_acc = acc\n",
|
317 |
+
" win_thres = thres\n",
|
318 |
+
" eval_acc = _acc_thres(score_eval, win_thres)\n",
|
319 |
+
" return {'thres': win_thres, 'train_accuracy': win_acc, 'eval_accuracy': eval_acc}"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": 13,
|
325 |
+
"id": "4e943ef9-ad40-494e-9d53-db9ccbf48bb4",
|
326 |
+
"metadata": {
|
327 |
+
"tags": []
|
328 |
+
},
|
329 |
+
"outputs": [
|
330 |
+
{
|
331 |
+
"name": "stderr",
|
332 |
+
"output_type": "stream",
|
333 |
+
"text": [
|
334 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12256/12256 [13:54<00:00, 14.69it/s]\n",
|
335 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4248/4248 [04:44<00:00, 14.94it/s]\n"
|
336 |
+
]
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"r = model_train(train_data, eval_data)"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 14,
|
346 |
+
"id": "9cd38cc9-fe71-45b9-a22e-977a2e787fb5",
|
347 |
+
"metadata": {
|
348 |
+
"tags": []
|
349 |
+
},
|
350 |
+
"outputs": [
|
351 |
+
{
|
352 |
+
"data": {
|
353 |
+
"text/plain": [
|
354 |
+
"{'thres': 0.25, 'train_accuracy': 0.831, 'eval_accuracy': 0.816}"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
"execution_count": 14,
|
358 |
+
"metadata": {},
|
359 |
+
"output_type": "execute_result"
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"source": [
|
363 |
+
"r"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": 15,
|
369 |
+
"id": "53622ff1-7465-4663-a9f0-0c18df37b93e",
|
370 |
+
"metadata": {
|
371 |
+
"tags": []
|
372 |
+
},
|
373 |
+
"outputs": [
|
374 |
+
{
|
375 |
+
"name": "stderr",
|
376 |
+
"output_type": "stream",
|
377 |
+
"text": [
|
378 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4468/4468 [04:58<00:00, 14.98it/s]\n"
|
379 |
+
]
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"source": [
|
383 |
+
"score_test = []\n",
|
384 |
+
"for item in tqdm(test_data):\n",
|
385 |
+
" score = sim(item['X1'], item['X2'])\n",
|
386 |
+
" score_test.append((score, item['Y']))"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"cell_type": "code",
|
391 |
+
"execution_count": 17,
|
392 |
+
"id": "47411f71-c774-4274-a1af-2a128589b559",
|
393 |
+
"metadata": {
|
394 |
+
"tags": []
|
395 |
+
},
|
396 |
+
"outputs": [
|
397 |
+
{
|
398 |
+
"data": {
|
399 |
+
"text/plain": [
|
400 |
+
"0.815"
|
401 |
+
]
|
402 |
+
},
|
403 |
+
"execution_count": 17,
|
404 |
+
"metadata": {},
|
405 |
+
"output_type": "execute_result"
|
406 |
+
}
|
407 |
+
],
|
408 |
+
"source": [
|
409 |
+
"_acc_thres(score_test, r['thres'])\n",
|
410 |
+
"#_acc_thres(score_test, 0.25)"
|
411 |
+
]
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"cell_type": "code",
|
415 |
+
"execution_count": null,
|
416 |
+
"id": "59b741bc-7a20-4ed0-bc9d-b82ec3edff34",
|
417 |
+
"metadata": {},
|
418 |
+
"outputs": [],
|
419 |
+
"source": []
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"metadata": {
|
423 |
+
"kernelspec": {
|
424 |
+
"display_name": "Python 3 (ipykernel)",
|
425 |
+
"language": "python",
|
426 |
+
"name": "python3"
|
427 |
+
},
|
428 |
+
"language_info": {
|
429 |
+
"codemirror_mode": {
|
430 |
+
"name": "ipython",
|
431 |
+
"version": 3
|
432 |
+
},
|
433 |
+
"file_extension": ".py",
|
434 |
+
"mimetype": "text/x-python",
|
435 |
+
"name": "python",
|
436 |
+
"nbconvert_exporter": "python",
|
437 |
+
"pygments_lexer": "ipython3",
|
438 |
+
"version": "3.10.0"
|
439 |
+
}
|
440 |
+
},
|
441 |
+
"nbformat": 4,
|
442 |
+
"nbformat_minor": 5
|
443 |
+
}
|