import os import gradio as gr from transformers import pipeline title = "Transcribe speech in German" pipeline = pipeline(task="automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-german") #pipeline = pipeline(task="automatic-speech-recognition", model="openai/whisper-large") def transcribeFile(audio_path : str) -> str: transcription = pipeline(audio_path) return transcription["text"] app1 = gr.Interface( fn=transcribeFile, inputs=gr.inputs.Audio(label="Upload audio file", type="filepath"), outputs="text", title=title ) app2 = gr.Interface( fn=transcribeFile, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text", title=title ) demo = gr.TabbedInterface([app1, app2], ["Audio File", "Microphone"]) if __name__ == "__main__": demo.launch()