File size: 4,909 Bytes
2b8d5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import llama_cpp
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

hf_hub_download(
    repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
    filename="qwen2-0_5b-instruct-q4_k_m.gguf",
    local_dir="./models"
)

hf_hub_download(
    repo_id="TobDeBer/Meta-Llama-3.1-8B-Instruct-Q4_K_M-GGUF",
    filename="meta-llama-3.1-8b-instruct-q4_k_m.gguf",
    local_dir="./models",
    token=huggingface_token
)
# 5GB

# RichardErkhov/ibm-granite_-_granite-7b-base-gguf
# granite-7b-base.Q4_K_M.gguf
hf_hub_download(
    repo_id="RichardErkhov/ibm-granite_-_granite-7b-base-gguf",
    filename="granite-7b-base.Q4_K_M.gguf",
    local_dir="./models",
    token=huggingface_token
)# 4GB

# TobDeBer/granite-8b-code-instruct-128k-Q4_K_M-GGUF
# granite-8b-code-instruct-128k-q4_k_m.gguf
hf_hub_download(
    repo_id="TobDeBer/granite-8b-code-instruct-128k-Q4_K_M-GGUF",
    filename="granite-8b-code-instruct-128k-q4_k_m.gguf",
    local_dir="./models",
    token=huggingface_token
)# 5GB

# Dropdown for Model Selection
model_dropdown = gr.Dropdown(
    [
        'qwen2-0_5b-instruct-q4_k_m.gguf',
        'meta-llama-3.1-8b-instruct-q4_k_m.gguf',
        'granite-7b-base.Q4_K_M.gguf',
		'granite-8b-code-instruct-128k-q4_k_m.gguf',
    ],
    value="qwen2-0_5b-instruct-q4_k_m.gguf",
    label="Model"
)

llm = None
llm_model = None

def respond(
    message,
    history: list[tuple[str, str]],
        system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
	selected_model,  # This is now a parameter received from the interface
):
    chat_template = MessagesFormatterType.GEMMA_2

    global llm
    global llm_model
    
    # Update the model if it has changed
    if llm is None or llm_model != selected_model:
        llm = Llama(
            model_path=f"models/{selected_model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = selected_model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

description = """<p align="center">Defaults to Qwen 500M</p>
"""

# Create the Gradio interface
with gr.Blocks() as demo:  # Create a Gradio Blocks context
    
    # Model selection dropdown above the chat
    model_dropdown.render()

    # Main chat interface
    chat_interface = gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value="You are a helpful assistant.", label="System message"),
            gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p",
            ),
            gr.Slider(
                minimum=0,
                maximum=100,
                value=40,
                step=1,
                label="Top-k",
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                value=1.1,
                step=0.1,
                label="Repetition penalty",
            ),
            model_dropdown  # Pass the dropdown directly
        ],
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
        submit_btn="Send",
        title="Chat with Qwen 2 and friends using llama.cpp",
        description=description,
    )

demo.queue().launch()