# conda activate audio # pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu import llama_cpp import os import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download huggingface_token = os.getenv("HUGGINGFACE_TOKEN") hf_hub_download( repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF", filename="qwen2-0_5b-instruct-q4_k_m.gguf", local_dir="./models" ) hf_hub_download( repo_id="TobDeBer/gpt2-Q4_K_M-GGUF", filename="gpt2-q4_k_m.gguf", local_dir="./models" ) hf_hub_download( repo_id="TobDeBer/Meta-Llama-3.1-8B-Instruct-Q4_K_M-GGUF", filename="meta-llama-3.1-8b-instruct-q4_k_m.gguf", local_dir="./models", token=huggingface_token ) # 5GB # RichardErkhov/ibm-granite_-_granite-7b-base-gguf # granite-7b-base.Q4_K_M.gguf # 4GB # TobDeBer/granite-8b-code-instruct-128k-Q4_K_M-GGUF # granite-8b-code-instruct-128k-q4_k_m.gguf # 5GB llm = None llm_model = None def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType.GEMMA_2 global llm global llm_model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs description = """
Defaults to Qwen 500M
More models in Advanced Section