Illia56 commited on
Commit
ce75f45
1 Parent(s): f37c2ef

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -21
app.py CHANGED
@@ -1,18 +1,26 @@
1
- import streamlit as st
2
  from gradio_client import Client
3
 
4
- # Constants
5
- TITLE = "Llama2 70B Chatbot"
6
- DESCRIPTION = """
7
- This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta,
8
- a Llama 2 model with 70B parameters fine-tuned for chat instructions.
 
 
9
  """
 
 
 
 
 
 
 
 
10
 
11
- # Initialize client
12
- client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
13
 
14
- # Prediction function
15
- def predict(message, system_prompt="", temperature=0.9, max_new_tokens=4096):
16
  return client.predict(
17
  message, # str in 'Message' Textbox component
18
  system_prompt, # str in 'Optional system prompt' Textbox component
@@ -22,18 +30,35 @@ def predict(message, system_prompt="", temperature=0.9, max_new_tokens=4096):
22
  1, # int | float (numeric value between 1.0 and 2.0)
23
  api_name="/chat"
24
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- # Streamlit UI
27
- st.title(TITLE)
28
- st.write(DESCRIPTION)
29
 
30
- # Input fields
31
- message = st.text_area("Enter your message:", "")
32
- system_prompt = st.text_area("Optional system prompt:", "")
33
- temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
34
- max_new_tokens = st.slider("Max new tokens", min_value=0, max_value=4096, value=4096, step=64)
35
 
36
- if st.button("Predict"):
37
- response = predict(message, system_prompt, temperature, max_new_tokens)
38
- st.write("Response:", response)
39
 
 
 
 
 
1
+ import gradio as gr
2
  from gradio_client import Client
3
 
4
+ client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
5
+
6
+
7
+
8
+ title = "Llama2 70B Chatbot"
9
+ description = """
10
+ This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions.
11
  """
12
+ css = """.toast-wrap { display: none !important } """
13
+ examples=[
14
+ ['Hello there! How are you doing?'],
15
+ ['Can you explain to me briefly what is Python programming language?'],
16
+ ['Explain the plot of Cinderella in a sentence.'],
17
+ ['How many hours does it take a man to eat a Helicopter?'],
18
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
19
+ ]
20
 
 
 
21
 
22
+ # Stream text
23
+ def predict(message, chatbot, system_prompt="", temperature=0.9, max_new_tokens=4096):
24
  return client.predict(
25
  message, # str in 'Message' Textbox component
26
  system_prompt, # str in 'Optional system prompt' Textbox component
 
30
  1, # int | float (numeric value between 1.0 and 2.0)
31
  api_name="/chat"
32
  )
33
+
34
+
35
+ additional_inputs=[
36
+ gr.Textbox("", label="Optional system prompt"),
37
+ gr.Slider(
38
+ label="Temperature",
39
+ value=0.9,
40
+ minimum=0.0,
41
+ maximum=1.0,
42
+ step=0.05,
43
+ interactive=True,
44
+ info="Higher values produce more diverse outputs",
45
+ ),
46
+ gr.Slider(
47
+ label="Max new tokens",
48
+ value=4096,
49
+ minimum=0,
50
+ maximum=4096,
51
+ step=64,
52
+ interactive=True,
53
+ info="The maximum numbers of new tokens",
54
+ )
55
+ ]
56
 
 
 
 
57
 
 
 
 
 
 
58
 
59
+ # Gradio Demo
60
+ with gr.Blocks(theme=gr.themes.Base()) as demo:
 
61
 
62
+ gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples, additional_inputs=additional_inputs)
63
+
64
+ demo.queue().launch(debug=True)