TogetherAI commited on
Commit
f3ee165
1 Parent(s): ef45b2f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -13
app.py CHANGED
@@ -2,15 +2,16 @@ import gradio as gr
2
  import yt_dlp as youtube_dl
3
  from transformers import pipeline
4
  from transformers.pipelines.audio_utils import ffmpeg_read
 
5
 
6
  import tempfile
7
  import os
8
- import time # Hinzugefügtes Modul für die Zeitberechnung
9
 
10
  MODEL_NAME = "openai/whisper-large-v3"
11
  BATCH_SIZE = 8
12
  FILE_LIMIT_MB = 1000
13
- YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
14
 
15
  device = 0 if torch.cuda.is_available() else "cpu"
16
 
@@ -26,18 +27,68 @@ def transcribe(inputs, task):
26
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
27
 
28
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
29
- return text
30
 
31
- # ... (Fortsetzung des Codes für die Funktionen _return_yt_html_embed, download_yt_audio, yt_transcribe, etc.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
- # Schritt 1: Definiere das gr.Blocks-Element für das Layout der Demo
34
  demo = gr.Blocks(theme="TogetherAi/Alex2")
35
 
36
- # Schritt 2: Ändere das Layout für das Blockelement auf "centered" und setze die Breite auf 500 Pixel
37
- demo.layout = "centered" # Layout auf "centered" ändern
38
- demo.width = 500 # Breite auf 500 setzen
39
 
40
- # Schritt 3: Erstelle die Schnittstellen wie zuvor für Audioaufnahmen, das Hochladen von Audiodateien und das Transkribieren von YouTube-Videos
41
  mf_transcribe = gr.Interface(
42
  fn=transcribe,
43
  inputs=[
@@ -78,7 +129,7 @@ yt_transcribe = gr.Interface(
78
  fn=yt_transcribe,
79
  inputs=[
80
  gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
81
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
82
  ],
83
  outputs=["html", "text"],
84
  layout="horizontal",
@@ -92,10 +143,7 @@ yt_transcribe = gr.Interface(
92
  allow_flagging="never",
93
  )
94
 
95
- # Schritt 4: Erstelle eine TabbedInterface, um die verschiedenen Schnittstellen für Mikrofon, Hochladen von Audiodateien und YouTube-Transkription anzuzeigen
96
  with demo:
97
  gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
98
 
99
- # Schritt 5: Starte die Demo
100
  demo.launch(enable_queue=True)
101
-
 
2
  import yt_dlp as youtube_dl
3
  from transformers import pipeline
4
  from transformers.pipelines.audio_utils import ffmpeg_read
5
+ import torch
6
 
7
  import tempfile
8
  import os
9
+ import time
10
 
11
  MODEL_NAME = "openai/whisper-large-v3"
12
  BATCH_SIZE = 8
13
  FILE_LIMIT_MB = 1000
14
+ YT_LENGTH_LIMIT_S = 3600
15
 
16
  device = 0 if torch.cuda.is_available() else "cpu"
17
 
 
27
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
28
 
29
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
30
+ return text
31
 
32
+ def _return_yt_html_embed(yt_url):
33
+ video_id = yt_url.split("?v=")[-1]
34
+ HTML_str = (
35
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
36
+ " </center>"
37
+ )
38
+ return HTML_str
39
+
40
+ def download_yt_audio(yt_url, filename):
41
+ info_loader = youtube_dl.YoutubeDL()
42
+
43
+ try:
44
+ info = info_loader.extract_info(yt_url, download=False)
45
+ except youtube_dl.utils.DownloadError as err:
46
+ raise gr.Error(str(err))
47
+
48
+ file_length = info["duration_string"]
49
+ file_h_m_s = file_length.split(":")
50
+ file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
51
+
52
+ if len(file_h_m_s) == 1:
53
+ file_h_m_s.insert(0, 0)
54
+ if len(file_h_m_s) == 2:
55
+ file_h_m_s.insert(0, 0)
56
+ file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
57
+
58
+ if file_length_s > YT_LENGTH_LIMIT_S:
59
+ yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
60
+ file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
61
+ raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
62
+
63
+ ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
64
+
65
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
66
+ try:
67
+ ydl.download([yt_url])
68
+ except youtube_dl.utils.ExtractorError as err:
69
+ raise gr.Error(str(err))
70
+
71
+ def yt_transcribe(yt_url, task, max_filesize=75.0):
72
+ html_embed_str = _return_yt_html_embed(yt_url)
73
+
74
+ with tempfile.TemporaryDirectory() as tmpdirname:
75
+ filepath = os.path.join(tmpdirname, "video.mp4")
76
+ download_yt_audio(yt_url, filepath)
77
+ with open(filepath, "rb") as f:
78
+ inputs = f.read()
79
+
80
+ inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
81
+ inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
82
+
83
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
84
+
85
+ return html_embed_str, text
86
 
 
87
  demo = gr.Blocks(theme="TogetherAi/Alex2")
88
 
89
+ demo.layout = "centered"
90
+ demo.width = 500
 
91
 
 
92
  mf_transcribe = gr.Interface(
93
  fn=transcribe,
94
  inputs=[
 
129
  fn=yt_transcribe,
130
  inputs=[
131
  gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
132
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
133
  ],
134
  outputs=["html", "text"],
135
  layout="horizontal",
 
143
  allow_flagging="never",
144
  )
145
 
 
146
  with demo:
147
  gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
148
 
 
149
  demo.launch(enable_queue=True)